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1 Introduction 

In a previous study (Bai et al., 2012), global changes of remotely sensed greenness (NDVI) and simulated 
biomass production (TBW) since 1981 have been analysed for the purpose of mapping global soil degradation. 
The objective of the current research is to refine the findings of this previous research, to more clearly identify 
areas (grid cells) affected by land degradation. As a start further fine-tuning is needed to improve (non-)linear 
correlations between various parameters in the analysis. Next, the aggregate impact of climate and the impact 
of human interventions causing abrupt changes like de- or reforestation should be quantified in a global 
context. This information can be used to correct the changes in greenness observed via NDVI and better 
identify areas that were exposed to land degradation and/or improvement. Other factors that cause land 
degradation and/or improvement fall outside the scope of this study and the results are therefore first steps in 
mapping land degradation. New maps will be created by linking the (corrected) changes in greenness to Net 
Primary Productivity (NPP) and these can be used for further analysis in other projects. The results from this 
report are used as input for the PBL project ‘Biodiversity, Ecosystem services and Development’ to assess the 
effects of land degradation on future economic development and biodiversity around the world (using the 
global model IMAGE). Moreover, results will also be verified in a related project by comparing changes in NDVI, 
TBW and NPP with local expert judgment from selected countries/areas.  
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2 Description of data sets 

2.1 ∑NDVI 

The Normalized Difference Vegetation Index (NDVI) is calculated from the red (RED) and near-infrared (NIR) light 
reflected by the Earth’s surface, i.e., NDVI = (NIR-RED)/(NIR+RED), and is used as a measure of vegetation or 
greenness. The NDVI data used in this study are produced by the Global Inventory Modelling and Mapping 
Studies (GIMMS) group from measurements made by the AVHRR radiometer on board of the US National 
Oceanic and Atmospheric Administration satellites (US-NOAA) (Tucker et al., 2004; Pinzon et al., 2007). The 
fortnightly images at 8km-spatial resolution, derived from daily 4 km global area coverage, are corrected for 
view geometry, volcanic aerosols, and other effects not related to vegetation cover (Tucker et al., 2005).  
The maximum-value-composite (MVC) technique is used to remove bias caused by atmospheric conditions 
(Holben, 1986). Orbital drift correction is performed using an empirical mode decomposition (EMD) 
transformation method of Pinzon et al. (2005) removing common trends between time series of solar zenith 
angle (SZA) and NDVI. Orbital decay and changes in NOAA satellites affect AVHRR data but processed NDVI 
data have been found to be free of trends introduced from these effects (Kaufmann et al., 2000). No 
atmospheric correction is applied to the GIMMS data except for volcanic stratospheric aerosol periods  
(1982–1984 and 1991–1994) (Tucker et al., 2005); some uncertainty still remains, especially in hazy and 
cloudy conditions (Nagol et al., 2009).  
 
 

 

Figure 1 
Degree of confidence of changes in ∑NDVI 1981–2006. Negative refers to an overall decline in ∑NDVI over the period and positive 
to an overall increase. 
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To remove any residual cloud effects or other outliers, the Harmonic Analysis of NDVI Time-Series (HANTS) 
algorithm (Verhoef et al., 1996; Roerink et al., 2000; Wit & Su, 2005) has been applied to smoothen and 
reconstruct the NDVI time-series (de Jong et al., 2012); the HANTS-reconstructed data from July 1981 to 
December 2006 was employed and annual sum NDVI or ∑NDVI is used as a proxy for annual greenness in this 
study. Simple linear trend analysis has been performed to indicate changes in ∑NDVI over time (1981–2006). 
Figure 1 shows two levels of significance for the ∑NDVI trend analysis by Bai and colleagues (2012).  
 
 
2.2 TBW 

Total annual production of biomass (TBW) was calculated for every year in the period 1981–2006 with the 
crop model LINPAC (Conijn et al., 2011; Jing et al., 2012) and refers to the rain-fed production level, i.e. 
optimum management but not irrigated, ample nutrient availability and free from pests, diseases and weeds. 
The model has a time step of one day and calculates daily biomass increase based on crop characteristics, 
soil and weather data: including soil texture, soil depth, soil water holding capacity, radiation, temperature, 
precipitation, vapour pressure and wind speed. Daily soil water availability and (evapo)transpiration following 
from a soil water balance calculation, and daily leaf area growth are intermediate variables. Accumulation of 
daily biomass production over the season leads to total biomass production and yield. Prior to the biomass 
calculation, the suitability of each grid cell for cropping under rain-fed conditions is checked per year as 
function of temperature, soil water availability and crop characteristics leading to calculated sowing and 
harvesting dates of all crop cycles in a year. For annual crops the number of cycles per year ranges from 0 to 
an assumed maximum of three and is found by ‘fitting’ temperature sum requirements of a crop into the period 
of suitable growing days per year (see also Conijn et al., 2011a). For perennial vegetation the plant growth 
period equals the period of suitable growing conditions. For this study two runs were separately executed to 
calculate the biomass production of an annual and a perennial vegetation and TBW has been found by 
combining the results of the two runs on the basis of the crop land fraction (fcrop) in each grid cell: 
 
TBW = fcrop * TBWannual + (1 – fcrop) * TBWperennial 
 
If one of the two model runs (annual or perennial) produces a zero value in a grid cell, the TBW of this cell is 
estimated by the value of the other run: 
 
TBW = TBWperennial   if TBWannual = 0 
TBW = TBWannual  if TBWperennial = 0 
 
Time series of gridded weather data (monthly averages/totals) from the Climate Research Unit (CRU, 2011) 
were used as input with a resolution of 30x30 arc-minutes. Daily values are calculated by a random distribution 
function for precipitation and by linear interpolation for the other climate variables. Soil characteristics were 
obtained from the ISRIC-WISE v1.0 database (Batjes, 2006) in combination with the Digital Soil Map of the 
World from FAO with a resolution of 5x5 arc-minutes (FAO, 1996). The land use map of Erb et al. (2007) was 
used to estimate the crop land fraction with a resolution of 5x5 arc-minutes. The annual crop has been 
approximated by taking the characteristics of a wheat/maize crop as input (wheat for temperate and maize for 
tropical regions) and those of Miscanthus to represent the perennial vegetation. Some parameters were 
adapted to ensure that in locations with short growing seasons (e.g. in dry or cold climates) vegetation types 
with shorter growth cycles compared to wheat, maize or Miscanthus could also be simulated. 
 
Because soil and crop characteristics are kept constant, the calculated biomass production will reflect the 
impact of changes in climate over time.  
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Simple linear trend analysis is used to indicate changes in TBW over time (1981–2006). Figure 2 shows two 
levels of significance for the TBW trend analysis (from Bai et al., 2012).  
 
 

 

Figure 2 
Degree of confidence of changes in TBW 1981–2006. Negative refers to an overall decline in TBW over the period and positive to 
an overall increase. 

 

 

2.3 NPP 

MODIS (Moderate-Resolution Imaging Spectro-Radiometer) MOD17A3 is a dataset of terrestrial gross and net 
primary productivity, computed at 1-km resolution at an 8-day interval with daily MODIS land cover, FPAR/LAI 
and global GMAO (Global Modeling and Assimilation Office) surface meteorology at 1km for the global 
vegetated land surface (Heinsch et al., 2003; Running et al., 2004; Zhao et al., 2005; Zhao & Running, 2010). 
The dataset produces daily gross primary production and sums to net primary production at the end of the 
year. The NPP data have been validated in various landscapes (Fensholt et al., 2004; 2006; Gebremichael & 
Barros, 2006; Turner et al., 2003; 2006) indicating that the calculated NPP are reliable at the regional scale 
(Zhao et al., 2005; 2006). The MOD17A3 is continuously produced and available till 2011; the improved 
MOD17A3 from 2000 through to 2006 which matches the available HANTS-reconstructed NDVI dataset, is 
used in this study to indicate non-vegetated areas for which NPP is assumed zero and to correlate with ∑NDVI 
and TBW.  
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2.4 Final data sets 

The data of NPP and ∑NDVI that originally had a higher resolution were rescaled to the lower resolution of TBW 
(5x5 arc-minutes) to allow correlations between NPP, ∑NDVI and TBW. For all three data annual values are 
available from 2000–2006 (NPP) and 1981–2006 (∑NDVI and TBW). The annual values have been used to 
calculate (a) mean values per grid cell, averaged over 2000–2006 (NPP, ∑NDVI and TBW) and 1981 –2006 
(∑NDVI and TBW) and (b) average changes over 1981–2006 per grid cell by linear regression against time 
(∑NDVI and TBW; Bai et al. 2012). The mean values per grid cell were used for correlations and together with 
the average changes of ∑NDVI and TBW also for estimating changes in mean NPP. For determining the 
correlation between mean NPP or ∑NDVI and TBW all grid cells where TBW cannot be calculated, e.g. due to 
missing weather data, have been excluded. For the correlation between mean NPP and ∑NDVI or TBW and the 
related calculation of the NPP change maps, all grid cells with mean NPP = 0 (2000–2006), according to the 
MODIS data set, have been excluded prior to the calculation of the regression and changes in NPP. This was 
done in order to limit the research to vegetated areas with mean NPP > 0 (according to MODIS for the period 
2000–2006). Non-relevant changes, where the absolute relative value (% change) is lower than a threshold, 
were not excluded before-hand, but a threshold has been used to highlight those cells in the maps of NPP 
change. For this a threshold of 0.2% per year has been applied (equivalent to 5% over 26 years). Statistical 
non-significant changes (Figures 1 & 2) were also not excluded before-hand. This information can be used as 
an additional layer to the NPP change maps to highlight the statistical significance of changes over time in 
∑NDVI and TBW on which the NPP change maps are based. 
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3 Regression results 

3.1  ∑NDVI as function of TBW 

To investigate a possible improvement in the relation between ∑NDVI as function of TBW (as published in Bai 
et al. 2012), one global equation was compared with a set of several equations to capture land cover 
variability in land cover with all equations having the form of ∑𝑁𝐷𝑉𝐼 = 𝑎 +  𝑏 ∗ √𝑇𝐵𝑊. Spatial land cover data 
from Erb et al. (2007) were used to create four subsets, differing in dominant land cover, from the global 
original data set. One global equation using all data (n = 1,867,010) has an adjusted R2 of 0.655 and the four 
equations separated by land cover have respectively  
 
adjusted R2 = 0.587  (cells with fraction grassland >= 0.67;  n = 473,088),  
adjusted R2 = 0.311  (cells with fraction crop land >= 0.67;  n = 67,274),  
adjusted R2 = 0.544  (cells with fraction forest >= 0.67;  n = 392,085),  
adjusted R2 = 0.641  (all remaining cells;  n = 934,563).  
 
The combination of the four equations (n = 1,867,010) has an adjusted R2 of 0.674. It can be concluded that 
the four equations combined only give a small improvement of the total adjusted R2 by +0.02. Hence, 
distinguishing land cover type will not improve the analysis.  
 
Another (multiple) linear regression analysis has been performed with one global equation, but including the 
different land covers of each grid cell continuously:  
 
∑𝑁𝐷𝑉𝐼 = 𝑎 +  𝑏 ∗ √𝑇𝐵𝑊 + 𝑐 ∗ %𝑔𝑟𝑎𝑠𝑠 + 𝑑 ∗ %𝑐𝑟𝑜𝑝 + 𝑒 ∗ %𝑓𝑜𝑟𝑒𝑠𝑡 
 
This equation has an adjusted R2 of 0.705, indicating an increase of 0.05 compared to the simple linear 
regression above. Although this improvement may seem relevant, the use of land cover data in the 
relation between ∑NDVI and TBW is not used further in this study because the change in land cover over 
time during 1981–2006 is not known, contrary to the changes in ∑NDVI and TBW. Changes in NPP 
cannot be explained adequately with equation(s) containing land cover data if the changes in land cover in 
each grid cell are unknown. 
 
 
3.2 NPP as function of ∑NDVI or TBW 

For calculating changes in NPP as function of ∑NDVI and TBW, a more direct approach was used by correlating 
NPP to ∑NDVI and NPP to TBW using mean values per pixel based on the annual values averaged over 2000–
2006. Both relations obtained for this period are based on the spatial variation over all grid cells and they are 
also assumed valid for the period 1981–2006. Moreover, it is assumed that these relations can be used to 
estimate the NPP changes over time of each grid cell based on the temporal changes of ∑NDVI and TBW per 
grid cell. The relation between NPP and ∑NDVI is used to estimate the change in NPP as function of ∑NDVI 
change during 1986–2006, assuming that a change in NPP (productivity) is reflected by a change in ∑NDVI 
(greenness), irrespective of the cause of these changes. The relation between NPP and TBW and the changes 
in TBW are used for estimating the climate-induced NPP change, because changes in calculated TBW are only 
caused by differences in the climatic variables during 1981–2006 that are used in the simulation.  
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Figure 3 
Scatter plot of the relation between mean values of ∑NDVI and NPP (2000–2006; only 1% of all data are shown, which have been 
randomly selected), including the regression line NPP = 24.6 + 37.9*∑NDVI + 9.09*(∑NDVI)2 (based on the entire dataset). 

 
 

 

Figure 4 
Scatter plot of the relation between mean values of TBW and NPP (2000–2006; only 1% of all data are shown, which have been 
randomly selected), including the regression line NPP = 106 + 18.8*TBW - 0.0884*(TBW)2 (based on the entire dataset). 
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The remaining change in NPP, i.e. the difference between total NPP change as function of ∑NDVI and climate-
induced NPP change as function of TBW, is then caused by non-climatic factors. Several different equations 
were tested to identify the best relation between the response variable NPP and the explanatory variables 
∑NDVI and TBW, including linear, quadratic, logistic, exponential, hyperbolic, Richards and Gompertz. A 
quadratic equation was selected for both relations, because it performed better (compared to the linear 
equation) or similar (compared to the other curve-linear equations) with respect to the adjusted R2.  
 
For NPP, ∑NDVI and TBW as mean values per grid cell during 2000–2006 the following global equations were 
fitted: 
 
𝑁𝑃𝑃 = 𝑎 + 𝑏 ∗ ∑𝑁𝐷𝑉𝐼 +  𝑐 ∗ (∑𝑁𝐷𝑉𝐼)2 (n=1,909,813; adjusted R2 = 0.693)  (1) 
 
𝑁𝑃𝑃 = 𝑑 + 𝑒 ∗ 𝑇𝐵𝑊 +  𝑓 ∗ (𝑇𝐵𝑊)2 (n=1,751,128; adjusted R2 = 0.663)  (2) 
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4 NPP change maps 

Changes in NPP during 1981–2006 were estimated by using equations 3 – 5 where parameters b – f refer to 
eqn. 1 and 2 and ∑NDVItrend and TBWslope represent the average changes over time based on linear regressions 
of annual values from 1981–2006 on time, as already reported by Bai and colleagues (2012). tNPP refers to 
the actual change in NPP as estimated from changes in ∑NDVI, cNPP is the change in NPP expected from the 
change in climate (estimated by the change in TBW) and nNPP is an estimate for the non-climate related part of 
the actual NPP change and refers to changes such as in land cover/use, crop management and soil 
degradation. The first part of equation 3 (between brackets) equals the derivative of equation 1 (dNPP/d∑NDVI) 
and the second part represents the derivative of the function relating ∑NDVI to time (d∑NDVI/dt). By multiplying 
both parts the change of mean NPP over time is calculated (dNPP/dt). The same holds for equation 4 and 2 
with respect to NPP and TBW, where the climate–induced NPP change is estimated.  
 
tNPP = (b + 2*c*∑NDVI) * ∑NDVItrend  (3) 
cNPP = (e + 2*f*TBW) * TBWslope   (4) 
nNPP = tNPP - cNPP    (5) 
 
Furthermore mean NPP values for 1981–2006 (NPPe) were estimated by using equation 1 in combination with 
mean values for ∑NDVI of the period 1981–2006 (note: the MODIS database used in this study only contained 
data from 2000–2006 of which mean NPP values were used for estimating the parameters of eqn. 1 and 2). 
With the NPPe value of each grid cell the percentages of change in NPP were derived by 100*tNPP / NPPe, 
100*cNPP / NPPe and 100*nNPP / NPPe and illustrated in Figures 5–7.  
 
 

 

Figure 5 
Actual change of estimated mean NPP (expressed as percentage per year) for the period 1981–2006. 
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Figure 6 
Climate-induced change of estimated mean NPP (expressed as percentage per year) for the period 1981–2006. 

 
 

 

Figure 7 
Non-climate related part of actual change of estimated mean NPP (expressed as percentage per year) for the period 1981–2006. 

 
 
Comparing Figure 5 from this report with Figure 3 from Bai and colleagues (2012), depicting the relative 
changes in ∑NDVI, shows that both maps are similar in magnitude and sign of the illustrated variables which is 
caused by relation 3 linking the actual change in NPP to the change in ∑NDVI. Likewise, Figure 6 (this report) 
resembles Figure 6 of Bai et al. (2012) due to relation 4 where the change in NPP expected from changes in 
climate is estimated as function of the calculated change in TBW. The difference between actual and climate-
induced change of NPP (Figure 7) is used to estimate the NPP change which cannot be attributed to changes 
in climate and is thus strongly affected by the difference in (relative) changes of ∑NDVI and TBW. E.g. in the 
Sahel zone (notably Mali, Burkina Faso and Niger) the ∑NDVI results indicate a ‘(re)greening’ during  
1981–2006 while TBW is also increasing due to improved weather conditions. Combining both data results in 
a negative change (declining trend) of the non-climate related NPP change, which could indicate that soil 
degradation may occur in this region, contrary to the first impression from the trend in ∑NDVI. In general there 
is a high correlation between positive values of the climate-induced NPP change (Figure 6) and negative values 
for the non-climate related NPP change (Figure 7) and vice versa with Figures 6 and 7 being ‘mirror images’ as 
a result (to a large extent). This is caused by the relative TBW change exceeding the relative ∑NDVI change in 
many grid cells, if expressed in absolute units (with positive values: relative TBW change > relative ∑NDVI 
change and with negative values: relative TBW change < relative ∑NDVI change).  
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5 Model sensitivity analysis 

An analysis has been performed to investigate the sensitivity of the model output as function of model input. 
The aim of this sensitivity analysis is to determine for a limited number of model inputs, related to crop 
characteristics/management, whether the estimation of the climate-induced NPP change in section 4 is biased 
due to the model input used in calculating TBW (Bai et al., 2012). Two model outputs have been selected for 
this analysis: average TBW (t DM ha-1 y-1) of the period 1981–2006 and 100*TBWslope / TBW (= c%TBW in % y-1) 
where TBWslope is found by linear regression of annual TBW values on time (n=26 from 1981–2006). The 
quotient TBWslope / TBW represents the relative change per year in TBW caused by climatic differences during 
1981–2006. This output is considered in this sensitivity analysis because it affects the overall analysis and 
outcome of the NPP change maps (Figures 6 & 7) in this study.  
 
The sensitivity analysis in this study is limited to Miscanthus and consequently covers most vegetated land 
(section 3.1). The simulation model is run for ca. 500,000 unique combinations of climate and soil 
characteristics (derived from the global gridded datasets) and these results were used in the sensitivity 
analysis. Due to the quotient TBWslope / TBW, model results with a value of zero for the average TBW could not 
be used in the sensitivity analysis. Obviously, these zero values have been taken into account when processing 
the model results into the global gridded maps of TBW.  
 
 
5.1 Standard run of Miscanthus 

For the standard run of Miscanthus that has been used in Bai et al. (2012), the cumulative frequency 
distributions of both TBW and c%TBW are illustrated in Figure 8. Mean value for TBW is 26.5 t DM ha-1 y-1 and 
90% of all values is below 66.2 t DM ha-1 y-1. Mean value for c%TBW is 0.191% y-1 and 90% of all values lies 
between −2.92% y-1 and +2.96% y-1. For the positive values of c%TBW, the mean amounts 1.15% y-1 and 90% 
is below 2.49% y-1 and for the negative values the mean equals −1.55% y-1 and 90% is above –4.13% y-1 (see 
also Table 2). Next to the slope also the standard deviation of the slope has been computed; the quotient of 
slope and standard deviation of the slope gives the t-value and values below -2.06 and above 2.06 indicate 
statistically significant slopes (n = 26; p < 0.05). It can be concluded that ca. 85.5% of all results have a t-
value between −2.06 and +2.06 and that these slopes are not significantly different from zero if an uncertainty 
of 5% is adopted. With a higher level of uncertainty (p < 0.10), 22.5% of all data is significantly different from 
zero and the remaining 77.5% is not (Figure 9).  
 
 

  

Figure 8 
Cumulative frequency distribution of (a) TBW and (b) c%TBW of the standard run of Miscanthus for all unique climate-soil 
combinations with average TBW > 0 (n = 404,085).  
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Figure 9 
Cumulative frequency distribution of the t-value of the slope of the standard run of Miscanthus for all unique climate-soil 
combinations with average TBW > 0 and standard deviation of slope > 0 (n = 404,067). 

 
 
In Figure 10a, c%TBW is plotted against TBW and shows that the higher values of c%TBW (either positive or 
negative) are found at lower values of TBW. Climate and soil conditions that ‘produce’ high average TBW values 
tend to have lower relative change rates which could indicate a higher stability in productivity (for a complete 
analysis of this stability also other variables should be examined, such as the standard deviation of the mean). 
 
In the model growth conditions are evaluated for each year (1981–2006) to determine whether a crop can 
grow or not. A crop cannot grow when it is too cold or too dry during most of the year. The model results for a 
specific soil-climate combination can thus consist of 26 times of ‘zero-growth’ (e.g. in a desert) up to 26 times 
of ‘growth’ (e.g. in a tropical rainforest). In our analysis the average TBW of 1981–2006 is based on all 26 
values, including the years with ‘zero-growth’ and due the limitation that average TBW > 0, at least one year in 
the sensitivity analysis was suitable for crop growth according to the model. Table 1 contains some data of the 
occurrence of ‘growth’ years: for 72% of the results all years were suitable for growth, for 86% the number of 
suitable years was at least 20 and situations with only 1 or 2 suitable years occurred in 2.5% of the results. It 
was expected that the absolute value of c%TBW is negatively correlated to the number of suitable years (see 
Figure 10). This can be explained by the generally lower average TBW and higher variability of annual TBW 
values when more years have a zero growth. Figure 10b shows that 19 or more suitable growth years (ca. 
87% of the data) have values for c%TBW between –10% and +10% per year which implies that higher (more 
positive or negative) values of c%TBW only occur when 8 or more years were not suitable for growth. 
 
 

  

Figure 10 
Relation between (a - left) c%TBW and TBW and (b - right) c%TBW and number of suitable years within the period 1981–2006 for the 
standard run of Miscanthus (average TBW > 0; n = 404,085). 
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Table 1 

Cumulative percentage of the number of years with/without growth within 1981–2006 for the standard run of Miscanthus and 

average TBW > 0 (maximum number = 26).  

No. of years with growth No. of years without growth Percentage  
(n = 404,085) 

1 or 2 25 or 24 2.5 
1 – 13  More than 12 10 
1 – 19  More than 6 14 
1 – 25  More than 0 28 
26 0 72 

 
 
In the model precipitation affects the results in two ways. First, precipitation determines with other factors the 
length of the growth period, which may be zero if conditions are too dry. Second, in the growth period 
precipitation affects crop transpiration and thereby possible water stress on growth resulting in lower 
production rates relative to the situation with irrigation in the growth period. To investigate the effects of 
precipitation, average TBW has been plotted against average cumulative precipitation during the growth period 
(PreGP, mm) and c%TBW has been plotted against the relative change in cumulative precipitation during the 
growth period (c%PreGP = 100*PreGPslope / PreGP; compare c%TBW) for each run (see Figure 11).  
 
 

  

Figure 11 
Relation between (a) average TBW and cumulative precipitation in the growth period (PreGP) and between (b) c%TBW and c%PreGP 
during 1981–2006 of the standard run of Miscanthus (average TBW > 0; n = 404,085).  

 
 
Average cumulative precipitation during the growth period appears to be a good predictor of average TBW 
(90% of the variance can be explained by an exponential curve; F pr. < 0.001) and the relative change in 
PreGP is closely correlated to the relative change in TBW (Figure 11b; in a linear regression 80% of the 
variance is explained). On average a change in c%PreGP correlates with an almost equal change in c%TBW and 
in most situations, i.e. 81.1% of all data, an increasing cumulative precipitation in the growth period during 
1981–2006 is related to an increase in TBW and vice versa. This indicates that c%TBW is closely related to 
the length of the growth period in days and its average daily precipitation (product of both equals PreGP) for 
the period 1981–2006. 
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5.2 Irrigated run of Miscanthus 

The first example of alternative input refers to the situation with irrigation during the growth period to reduce 
the water stress during this period to zero. It was hypothesized that irrigation would decrease the relative 
changes in TBW because weather variability would be reduced by adding extra water. In the model this option 
does not affect the length of the growth period, which depends on precipitation before and near the end of the 
growth period, next to other factors, such as temperature. Figure 12 illustrates the effects on average TBW 
and c%TBW and shows that the average TBW is increased (all values are equal or larger than those from the 
standard run) where the absolute value of c%TBW is on average lower than in the standard run. However, there 
still remains a large amount of variation in c%TBW of the irrigated run which means that irrigation in the growth 
period only has a limited effect on the values of c%TBW as calculated in the standard run.  
 
 

  

Figure 12 
Relation between (a – left) TBW and (b – right) c%TBW of the irrigated run and the standard (= non-irrigated) run of Miscanthus 
(average TBW > 0; n = 404,085). 

 
 
5.3 Run with red=0.5 for Miscanthus 

Two input parameters have been adjusted simultaneously: a reduction factor of 0.5 is introduced that is 
multiplied in the model with both the biomass production as well as the leaf area growth on a daily basis (in the 
standard run this factor equals 1.0, i.e. no reduction) and the maximum leaf area index (LAI) is reduced with 
50% relative to its original value of the standard run. This option was selected because it was hypothesized 
that in the simulated rain-fed growing conditions assuming e.g. ample nutrient supply and consequently higher 
production levels than can be expected in reality under nutrient limited conditions, the effect of weather 
variability on TBW would be amplified. Using the reduction factor as explained above introduces an extra 
limiting factor causing lower biomass production in the model and expected lower sensitivity to weather 
variability. Figure 13 illustrates the effects on average TBW and c%TBW and shows that the average TBW is 
reduced with ca. 53% (slightly higher than the reduction factor) and that on average c%TBW is equal to the 
standard run, indicating that the slope of TBW of this new run is also reduced with ca. 53%. When both the 
average and the slope are reduced with the same magnitude the c%TBW will not be different as is the case in 
this run compared to the standard run. The introduction of the reduction factor, as described above, to 
calculate lower (more realistic) TBW values did not affect the relative changes in TBW compared to the 
standard run and the hypothesis of the effects of weather variability ‘being amplified’ in the standard run has 
not been confirmed.  
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Figure 13 
Relation between (a – left) TBW and (b – right) c%TBW of the run with red=0.5 and the standard run of Miscanthus (average TBW > 
0; n = 404,085). 
 
 
5.4 Reed canary grass 

Reed canary grass has been used in the sensitivity analysis as an alternative perennial species and being a C3 
species many crop characteristics differ from Miscanthus (C4 species). In general it will better adapted to 
colder environments and has a lower production in warmer/drier climates. The effects on average TBW and 
c%TBW are illustrated in Figure 14.  
 
 

  

Figure 14 
Cumulative frequency distribution of (a – left) TBW and (b) c%TBW (b – right) of the run of Reed Canary grass for all unique climate-
soil combinations with average TBW > 0 (n = 396,393). 
 
 

 

 

Figure 15 
Cumulative frequency distribution of the t-value of the slope of the run of Reed Canary grass for all unique climate-soil combinations 
with average TBW > 0 (n = 396,393).  
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Mean value for TBW is 17.0 t DM ha-1 y-1 and 90% of all values is below 40.5 t DM ha-1 y-1. Mean value for 
c%TBW is 0.04% y-1 and 90% of all values lies between –3.50% y-1 and +2.68% y-1. For the positive values of 
c%TBW, the mean amounts 1.08% y-1 and 90% is below 2.22% y-1 and for the negative values the mean equals -
1.63% y-1 and 90% is above –4.46% y-1. Table 2 contains the data next to the run with Miscanthus. Based on 
the t-values of Reed canary grass (Figure 15) it can be concluded that ca. 87.1% of all results have a t-value 
between -2.06 and +2.06 and that these slopes are not significantly different from zero if an uncertainty of 5% 
is adopted. With a higher level of uncertainty (p < 0.10), 20.6% of all data is significantly different from zero 
and the remaining 79.4% is not (Figure 15). 
 
 
Table 2 

Some data on mean TBW and mean c%TBW.  

Run mean  
TBW 

90%_TBW mean  
c%TBW 

90%_limits positive mean 
c%TBW 

90%_pos. 
c%TBW 

negative 
mean c%TBW 

90%_neg. 
c%TBW 

Miscanthus 
n=404,085 

26.5 66.2 0.191 -2.92<>+2.96  1.15 2.49 -1.55 -4.13 

Reed C.grass 
n=396,393 

17.0 40.5 0.04 -3.50<>+2,68 1.08 2.22 -1.63 -4.46 

90%_TBW = TBW value below which 90% of the data occurs 
90%_limits = negative and positive c%TBW values between which 90% of the data occurs 
90%_pos. c%TBW = for positive c%TBW values, the c%TBW value below which 90% of the data occurs  
90%_neg. c%TBW = for negative c%TBW values, the c%TBW value above which 90% of the data occurs 

 
 
These results show that the average TBW values of Reed Canary grass are significantly lower than those of 
Miscanthus (Table 2) and that the %cTBW values are comparable to those from Miscanthus. The large 
difference in TBW is accompanied by a relatively equal difference in the slope values, i.e. sensitivity to weather 
variability, which results in similar %cTBW values. 
 
 
Table 3 

Cumulative percentage of the number of years with growth within 1981–2006 for the run with Reed canary grass and average TBW 

> 0 (maximum number = 26).  

 No of years with growth No of years without growth Percentage  
(n = 396,393) 

 1 or 2 25 or 24 2.4 
 1 – 13  More than 12 10 
 1 – 19  More than 6 14 
 1 – 25  More than 0 29 
 26 0 71 

 
 
Summarizing, the calculated mean TBW is strongly affected by the changes in model input. Using Reed canary 
grass instead of Miscanthus or introducing a growth reduction factor both decreased the mean TBW 
considerably while on the other hand applying irrigation in the growing season increased the mean TBW. 
However, using another (C3) perennial grass species or altering the production level by introducing the 
reduction factor had practically no effect and irrigation had only a very modest effect on the relative change in 
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TBW which was calculated from the annual weather data during 1981–2006. Referring to the aim of this 
sensitivity analysis, alternative crop model input that would significantly affect the outcome of the climate-
related NPP change maps (Figures 6 and 7) was not found in this study. With respect to the investigated model 
input, the calculations of the relative change in TBW from Bai and colleagues (2012) are rather robust.  
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6 Detecting abrupt changes in NDVI 

Land degradation is driving long-term losses of ecosystem functioning. Global changes of satellite 
measurements of vegetation greenness (NDVI) since 1981 have been determined in the previous study  
(Bai et al., 2012). However, these changes in greenness, based on time series of NDVI, leave abrupt changes 
undetected. These abrupt changes might have occurred e.g. because of changes in land use and directly 
affecting the NDVI values but they are not necessarily related to soil degradation such as forest fires. 
Degradation is expected to result in more gradual changes.  
 
Global time series are not available for changes in land use. This hampers direct analyses of abrupt changes  
in land use at the global scale. We therefore selected twenty locations in four regions around the world with 
known changes in land use for instance from forest to agriculture, re- and deforested areas, wildfire and 
without land use change in the same area in order to  
1) illustrate variations in ∑NDVI of these locations for 1981–2006;  
2) analyze whether it would be possible to identity a threshold to trace the disturbances compared to  

the locations without disturbances; 
3) explore whether or not abrupt NDVI change can be detected through the threshold method;  
4) test whether the thresholds can be verified in other sites and applied globally.  
 
In addition, data of global abrupt NDVI trend changes during 1982–2008 by de Jong et al. (2012) were 
referenced as supplementary information for these case by case analyses. 
 
 
6.1 NDVI variations in areas with/without LUC in the Argentinean Chaco 

region 

Land use change in the Chaco region of Argentina since 1977 has been detected by mapping parcels where 
the original vegetation has been substituted by crops in four temporal series 1977, 1992, 2002, 2008 (Bai 
et al., 2013, Figure 16, left) and five sites in the polygon maps with known land use change and without land 
use change are selected for analysis of NDVI variations. Additionally global abrupt trend change of NDVI 
detetced by de Jong et al. (2012) for the Chaco region are shown in Figure 16, right; ∑NDVI variations for the 
selected sites with/without land use changes are presented in Figure 17 and summarized in Table 4. 
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Figure 16 
Land use change (left, data from Adámoli et al., 2011, 1-5 are the selected sites) and abrupt trend change in NDVI (right, data from 
de Jong et al., 2012) in the Chaco region. 
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Figure 17 
∑NDVI variations 1981–2006 with/without LUC in the Chaco region, Argentina (five sites, based on the LUC map made by Adámoli 
et al., 2011). 
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At site 1, land cover is a mosaic vegetation comprising 50–70% of mixed grassland, shrub land and forest and 
20–50% cropland. Land use changed from forest to cropland during 1992–2002. Multi-year mean ∑NDVI is 
6.76, standard deviation is 0.75. The difference between multi-year mean ∑NDVI and the lowest value of ∑NDVI 
(in the year 2004) is 2.23. There is no abrupt NDVI trend change detected according to the data analysed by 
de Jong et al. (2012).  
 
Site 2 is adjacent to site 1: land cover is closed (>40%) broadleaved deciduous forest (>5m); no land use 
change occurred during 1977–2008. Multi-year mean ∑NDVI is 7.11, standard deviation is 0.47. The 
difference between multi-year mean ∑NDVI and the lowest value of ∑NDVI (in the year 2003) is 1.14. There is 
no abrupt NDVI trend change detected by de Jong et al. (2012).  
 
At site 3, land cover is comparable to site 1. Land use changed during 2002–2008. Multi-year mean ∑NDVI is 
6.70, standard deviation is 0.35. The difference between multi-year mean ∑NDVI and the lowest value of ∑NDVI 
(in the year 2003) is 0.85. One abrupt NDVI trend change was detected according to de Jong et al. (2012).  
 
Site 4 is adjacent to site 3. Land cover is closed to open with >15% (broadleaved or needle-leaved, evergreen 
or deciduous) shrub land (<5m). No land use change occurred during 1977–2008. Multi-year mean ∑NDVI is 
7.49, standard deviation is 0.32. The difference between multi-year mean ∑NDVI and the lowest value of ∑NDVI 
is 0.68. There is no abrupt NDVI trend change detected by de Jong et al. (2012).  
 
At site 5, land cover comprises rain-fed croplands, whereas land use changed during 1992–2002. Multi-year 
mean ∑NDVI is 6.37, standard deviation for the changes in land use is 0.55. The difference between multi-year 
mean ∑NDVI and the lowest value of ∑NDVI (in the year 2004) is 1.29. Two abrupt NDVI trend changes were 
detected by de Jong et al. (2012).  
 
The results for the above-mentioned sites are summarized in Table 4. 
 
 
Table 4 

Statistics of NDVI, land cover and LUC at five sites in the Chaco region, Argentina. 

 
 

Sites Lon/Lat (degree) Land cover (ESA, 
2008) LUC1 ∑NDVIavg

2 ∑NDVIstdev
3 ∑NDVIavg - ∑NDVImin

4 100(∑NDVIavg - 
∑NDVImin)/∑NDVIavg

Abrupt NDVI change5

1 62.024W/27.123S Mosaic vegetation 
(grassland shrubland 
forest) (50-70%) 
cropland (20-50%)

yes 6.7594 0.7489 2.2307 33.0 0

2 62.1843W/27.0268S Closed (> 40%) 
broadleaved 
deciduous forest 
(>5m)

no 7.1147 0.4682 1.1362 16.0 1

3 61.1882W/30.009S Mosaic vegetation 
(grassland shrubland 
forest) (50-70%)  
cropland (20-50%)

yes 6.7021 0.3467 0.8451 12.6 1

4 60.9536W/30.009S Closed to open 
(>15%) (broadleaved 
or needle-leaved, 
evergreen or 
deciduous) shrub-
land (<5m)

no 7.4909 0.3183 0.6784 9.1 0

5 61.8436W/27.6123S Rain-fed croplands yes 6.3733 0.5396 1.2866 20.2 2
1 LUC = land use change
2  NDVIavg = Multi-year mean ∑NDVI (1981-2006)
3 NDVIstdev = Multi-year ∑NDVI standard deviation (1981-2006)
4 NDVImin = Multi-year minimum ∑NDVI (1981-2006)
5 Number of abrupt trend change in NDVI (1981-2006) (according to de Jong et al . 2012)
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In the Chaco region, 95% of the changes in land use refer to changes of forest or grassland into cropland (Bai 
et al., 2013). Figure 17 and Table 4 indicate that i) the changes in land use from forest or grassland to 
cropland result in the reduction in greenness, i.e., average ∑NDVI; ii) the largest drops of the ∑NDVI did not 
occur in the known periods of land use changes (site 1 and 5); iii) there are differences in the standard 
deviation of the average ∑NDVI for sites with land use change (sites 1 and 5) and without land use change 
(sites 2 and 4) but there are also no obvious differences between the site with LUC (site 3) and the sites 
without LUC (sites 2 and 4); iv) the average of the differences between multi-year average ∑NDVI and minimum 
∑NDVI for the three sites with land use changes is 1.454.  
 
The difference between multi-year average ∑NDVI and minimum ∑NDVI might be an indicator for any changes in 
land use but the value for this threshold remains to be tested. A tentative threshold value of 1.454 (see above) 
is applied both to the global scale (a draft map is appended in Appendix I; Figure A1) and to the Chaco region 
(Figure 18, left). Comparison of Figure 18 (left) to Figure 16 (left) indicated that some 26.3% of the cells with a 
value larger than this threshold show changes in land use coincidentally; the remaining cells (73.7%) with a 
value larger than 1.454 show no changes in land use. In contrast, 24.5% of the areas with changes in land use 
(Figure 16 (left)) are detected by the indicator (i.e. difference between multi-year average and minimum ∑NDVI) 
if the value of 1.454 is used as threshold. The average value of the indicator for all the areas (pixels) with 
known land use changes in the Chaco region is 1.185. If this lower threshold value is used, some 23.8% of all 
pixels with a value larger than 1.185 in the Chaco region also show land use change and 46.1% of all cells with 
land use change have a value larger than 1.185. 
 
 

 

Figure 18 
Difference between multi-year mean ∑NDVI and minimum ∑NDVI for the Chaco region (left, ≥1.454) and for the areas with changes 
in land use (right, average value ≥1.185). 

 
 
A relative deviation, i.e., the ratio between the difference of the multi-year mean annual ∑NDVI and minimum 
∑NDVI and the multi-year mean annual ∑NDVI, or 100(∑NDVIavg - ∑NDVImin)/∑NDVIavg was calculated for all cells.  
A value of 20% is used as a threshold based on the ratios at the selected sites where the land use changes 
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were known. Figure 19 (left) shows the areas where the relative deviation is larger than this threshold. 
Statistics show that 24% of the grid cells with the relative deviation larger than the threshold (20%) 
experienced land use change. The global values for this relative deviation during 1981–2006 are illustrated in 
Figure A2 in the Appendix I.  
 
Standard deviation of annual ∑NDVI over 1981−2006 was calculated for the selected sites (Table 4), the 
average of annual ∑NDVI standard deviation for the sites with land use change is 0.55. Statistics indicates that 
26.3% of the grid cells in the Chaco region with the standard deviation larger than 0.55 experienced land use 
change (Figure 19, right). The global values for the ∑NDVI standard deviation during 1981–2006 are illustrated 
in Figure A3 in the Appendix I.  
 
 

  

Figure 19 
Percentage of ∑NDVIavg - ∑NDVImin)/∑NDVIavg larger than 20% (left), standard deviation of annual ∑NDVI (right) in the Chaco region, 
Argentina. 

 
 
6.2 NDVI variations in the areas with/without LUC in the Argentinean 

Salta province  

To match the period of NDVI time series 1981−2006, land use change for the same period for Salta province 
of Argentina are determined (Figure 20 (left, data from Adámoli et al., 2011). This period also fits well with the 
abrupt NDVI trend change detected by de Jong et al. (2012; Figure 20, right). Land use change in this case 
consists of a change from forest to crop land. NDVI variations at the four sites (two sites with LUC; and two 
without LUC) are illustrated in Figure 21, statistics are summarized in Table 5.  
 
At site 1: land use changed during 1981−2006 and current land is covered by rain-fed crops; multi-year mean 
annual sum NDVI (∑NDVI) is 6.04, standard deviation is 0.44. The difference between multi-year mean ∑NDVI 
and the lowest value of ∑NDVI (in the year 2001) is 1.09; One abrupt NDVI change was detected according to 
de Jong et al. (2012). 
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Figure 20 
Land use change during 1981–2006 (left, 1–5 are the selected sites) and abrupt trend in NDVI (right) in Salta province, Argentina. 

 
 
Site 2 is adjacent to site 1 without land use change, land cover is closed (>40%) broadleaved deciduous forest 
(>5m) (ESA, 2008). Multi-year mean annual sum NDVI is 6.81, standard deviation is 0.41. The difference 
between multi-year mean ∑NDVI and the lowest value of ∑NDVI (in the year 1982) is 0.81; no abrupt NDVI 
change was detected according to de Jong et al. (2012). 
 
At site 3: land use changed during 1981−2006, current cover consists of rain-fed crops; multi-year mean 
∑NDVI is 5.60, standard deviation is 0.38. The difference between multi-year mean ∑NDVI and the lowest value 
of ∑NDVI (in the year 2004) is 0.87; One abrupt NDVI change was detected according to Rogier et al. (2012). 
 
At site 4: there was no land use change, land is covered by a closed (>40%) broadleaved deciduous forest 
(>5m) (ESA, 2008). Multi-year mean annual sum NDVI is 6.77, standard deviation is 0.54. The difference 
between multi-year mean ∑NDVI and the lowest value of ∑NDVI (in the year 2004) is 1.29; no abrupt NDVI 
change was detected according to Rogier et al. (2012). 
 
 
Table 5 

Statistics of NDVI, land cover and LUC of four sites in the Salta province, Argentina. 

 
 
 
In the Salta province, multi-year average ∑NDVI for the cropland sites (1 and 3) is close to 6 which is about 0.8 
lower than that for the broadleaved deciduous forest sites (2 and 4; Table 5); the differences of the multi-year 
average ∑NDVI for the sites with/without LUC are hardly distinguished; this is also true for the standard 
deviation of the annual ∑NDVI and for the difference between multi-year mean ∑NDVI and lowest ∑NDVI values. 
A threshold cannot be identified from this case analysis. 

Sites Lon/Lat (degree) Land cover (ESA, 2008) LUC1 ∑NDVIavg
2 ∑NDVIstdev

3
∑NDVIavg - 

∑NDVImin
4

100(∑NDVIavg - 
∑NDVImin)/∑NDVIavg

Abrupt NDVI 
change5

1 63.647W/22.764S Rain-fed cropland yes 6.0363 0.4391 1.094 18.12 1

2 63.4349W/22.7953S Closed (> 40%) 
broadleaved deciduous 
forest (>5m)

no 6.8131 0.4098 0.8071 11.85 0

3 63.9511W/24.8486S Rain-fed cropland yes 5.8977 0.379 0.8738 14.82 1

4 63.3613W/24.669S Closed (>40%) 
broadleaved deciduous 
(>5m)

no 6.7743 0.5354 1.2943 19.11 0

1 LUC = land use change
2 NDVIavg = Multi-year mean ∑NDVI (1981-2006)
3 NDVIstdev = Multi-year ∑NDVI standard deviation (1981-2006)
4 NDVImin = Multi-year minimum ∑NDVI (1981-2006)
5 Number of abrupt trend change in NDVI (1981-2006) (according to de Jong et al . 2012)

1 

2 

4 

3 
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Figure 21 
NDVI variations 1981–2006 at sites with/without LUC indicated in the headings of each graphs in the Salta province, Argentina. 

 
 
6.3 NDVI variations in burnt and non-burnt areas in the Southeastern 

Russia 

Wild fire in south-east (SE) Russia for the period of 1996–2002 has been determinded by the Satellite image 
analysis (Sukhinin et al., 2004). The burnt areas were double checked with GLC2000 Global Land Cover data 
(JRC, 2006). Figure 22 shows the time series areas burnt per year and Figure 23 illustrates the inventory of 
the burning (top) and abrupt NDVI trend change according to de Jong et al. (2012).  
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Figure 22 
Wildfire in SE Russia from 1996 to 2002. 
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Figure 23 
Top: aggregation of areas affected by wildfire events for the period of 1996–2002; sites 1–6 are the selected sites; bottom: 
abrupt trend change in NDVI over 1982–2008 (de Jong et al., 2012). 

 
 
Figure 24 shows variations of annual ∑NDVI over 1981–2006 at sites in the burnt and no burnt areas in SE 
Russia; their statistics are summarized in Table 6.  
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Figure 24 
∑NDVI variations in the burnt and no burnt areas in SE Russia. 



 

40 ISRIC Report 2013/01 

Site 1 was intially covered by needle-leaved, deciduous forest (JRC, 2000) and wildfire occurred in the year 
2000 (Sukhinin et al., 2004). The multi-year mean ∑NDVI is 3.81; the ∑NDVI value after burning is 0.79 lower 
than the multi-year mean; the standard deviation of annual ∑NDVI values for the entire period 1981–2006 is 
about 0.28. One abrupt NDVI trend change was detected by de Jong et al. (2012) for the site. After two years 
the vegetation seems to have recovered in terms of ∑NDVI values. 
 
Site 2 shows NDVI variation in a non-burnt area in SE Russia, adjacent to site 1; land is covered by a needle-
leaved, deciduous forest (JRC, 2000). The standard deviation of the annual ∑NDVI values over 1981–2006 is 
0.22 and multi-year mean of ∑NDVI is 3.65; the difference between multiyear mean ∑NDVI and minimum ∑NDVI 
is 0.43. There is one abrupt trend change detected according to de Jong et al. (2012). 
 
At site 3 intial cover consisted of a needle-leaved, deciduous forest (JRC, 2000) and wildfire occurred in the 
year 2000. Multi-year mean ∑NDVI is 4.05; standard deviation of annual ∑NDVI values is 0.19; the difference 
between multi-year mean ∑NDVI and minimum ∑NDVI is 0.38. No abrupt NDVI trend change was detected by 
de Jong et al. (2012). 
 
Site 4 was covered by trees and burnt in 1998. Multi-year mean ∑NDVI is 3.47; standard deviation of annual 
∑NDVI values is 0.28. The difference between multi-year mean ∑NDVI and minimum ∑NDVI is 0.70. One abrupt 
NDVI trend change was detected by de Jong et al. (2012). 
 
Site 5 was covered by trees and burnt in 1998 and 2000. Multi-year mean ∑NDVI is 3.74; standard deviation is 
0.38; the difference between multi-year mean ∑NDVI and minimum ∑NDVI is 0.99. Three abrupt NDVI trend 
changes were detected by de Jong et al. (2012). 
 
Site 6 refers to non-burnt area and is covered by needle-leaved evergreen forest; multi-year mean ∑NDVI is 
4.95 with a standard deviation of 0.173; the difference between multi-year mean ∑NDVI and minimum ∑NDVI is 
0.41. One abrupt NDVI trend change was detected by de Jong et al. (2012). 
 
 
Table 6 

Statistics of NDVI in the burnt and non-burnt areas in Southeast Russia. 

 
 
 
 

Sites Lon/Lat (degree) Land cover (JRC, 2000) Burnt1 ∑NDVIavg
2 ∑NDVIstdev

3 ∑NDVIavg - ∑NDVImin
4 100(∑NDVIavg - 

∑NDVImin)/∑NDVIavg

Abrupt NDVI 
change5

1 118.117E/53.666N Burnt area (Code=10) yes 3.8104 0.2833 0.7934 20.82 1

2 118.117E/53.572N Needleleaved, 
deciduous forest

no 4.0475 0.1946 0.375 9.26 1

3 129.143E/54.072N Burnt area (Code=10) yes 3.6543 0.2191 0.4287 11.73 0

4 140.147E/51.198N Burnt area (Code=10) yes 3.4669 0.2789 0.7034 20.29 1

5 112.409E/51.539N Burnt area (Code=10) yes 3.7371 0.3826 0.9911 26.52 3

6 129.661°E/53.965°N Needleleaved 
evergreen forest

no 4.9544 0.1728 0.4084 8.24 1

5 Number of abrupt trend change in NDVI (1981-2006) (according to de Jong et al . 2012)

1 According to Sukhinin et al ., 2004
2 NDVIavg = Multi-year mean ∑NDVI (1981-2006)
3 NDVIstdev = Multi-year ∑NDVI standard deviation (1981-2006)
4 NDVImin = Multi-year minimum ∑NDVI (1981-2006)



 

 ISRIC Report 2013/01 41 

Table 6 and Figure 24 indicate that i) multi-year mean ∑NDVI for the burnt areas is lower than that for the non-
burnt areas (comparing site 1 to site 2 which had similar land cover before the burning, or site 3 to site 6 
which had similar land cover before the burning), the difference is approximately 0.83; ii) the ∑NDVI at the 
burnt sites either recovered within 2–3 years after burning (sites 1 and 4), or showed no obvious change 
before and after burning (site 3 and 2nd burning at site 5); iii) the ∑NDVI standard deviation for the burnt areas 
is higher than those for the non-burnt areas, the difference is about 0.11; iv) the difference between multi-year 
mean ∑NDVI and minimum ∑NDVI is higher for the burnt areas than for the non-burnt areas, the difference is 
about 0.34.  
 
 
6.4 NDVI variations in areas with/without deforestation in the DR of the 

Congo  

Satellite images on forest cover and change for the periods of 2000–2005 and 2005–2010 in the Democratic 
Republic of the Congo (OSFAC, 2010) was downloaded and displayed in Figure 25. The Landsat Enhanced 
Thematic Mapper Plus (ETM+) images with less than 50% cloud cover were processed to generate the 
forest cover extent and loss analysis for 2000 to 2005 and 2005 to 2010. The ETM+ data are 
resampled to a 60 m spatial resolution. Forest was defined as 30% or greater canopy cover for trees of 
5 meters or more in height. All such assemblages that were converted to non-forest are quantified and 
labelled as forest cover loss. Forest cover and loss were divided into three categories: primary forest, 
secondary forest and woodlands. Primary forest cover is defined as mature forest with greater than 60% 
canopy cover. Secondary forest is defined as re-growing immature forest with greater than 60% canopy 
cover. Woodland is defined as forest cover with greater than 30% and less or equal to 60% canopy 
cover. Permanent water bodies were mapped separately (OSFAC, 2010).  
 
The forest cover and loss for the period of 2000–2005 is used for this case analysis. Figure 26 shows 
the details through zooming in and is used to extract time series NDVI for the selected sites (Figure 27); the 
results are summarized in Table 7. 
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Figure 25 
Forest cover and loss within 2000–2005 and 2005–2010 in the DR of the Congo.



 

 ISRIC Report 2013/01 43 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 
Forest cover loss within 2000–2005 in a part of the DR of the Congo, 1–5 are the selected sites. 
 
 
At site 1, land cover is primary humid tropical forest with about 30% deforestation by area during 2000–2005; 
multi-year mean ∑NDVI is 8.52; standard deviation is 0.34; the difference between multi-year mean ∑NDVI and 
minimum ∑NDVI is 0.58. No abrupt NDVI trend changes were detected by de Jong et al. (2012) for this site.  
 
Site 2 is close to site 1 but land cover is 100% primary humid tropical forest; there is no deforestation; multi-
year mean of ∑NDVI is 8.63; standard deviation is 0.31; the difference between multi-year mean ∑NDVI and 
minimum ∑NDVI is 0.53. no abrupt NDVI trend changes were detected by de Jong et al. (2012). 
 
Site 3: land cover is woodlands without deforestation. Multi-year mean of ∑NDVI is 7.46; standard 
deviation is 0.25; the difference between multi-year mean ∑NDVI and minimum ∑NDVI is 0.64. No abrupt 
NDVI trend changes were detected by de Jong et al. (2012). 
 
It is hard to find forest cover loss in the woodlands dominated area during 2000–2005. 
 
Site 4: land cover is secondary humid tropical forests with about 20% deforestation by area during 2000–
2005. Multi-year mean of ∑NDVI is 8.74; standard deviation is 0.54; the difference between multi-year mean 
∑NDVI and minimum ∑NDVI is 0.85. Two abrupt NDVI trend changes were detected by de Jong et al. (2012). 
 
Site 5: land cover is secondary humid tropical forests without deforestation. Multi-year mean of ∑NDVI is 
9.11; standard deviation is 0.27; the difference between multi-year mean ∑NDVI and minimum ∑NDVI is 
0.67. One abrupt NDVI trend change was detected by de Jong et al. (2012). 
 
 

1 

2 

3 

4 

5 
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Figure 27 
NDVI variations in the areas with/wtihout forest loss in the DR of the Congo. 
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Table 7 

Statistics of NDVI in the areas with/without forest loss in the DR of the Congo. 

 
 
 
Comparison of the multi-year mean ∑NDVI for the period of 1981–2006 at site 1 (deforestation) with that at 
site 2 (no deforestation) indicates that they are not significantly different; this is also true for the mean ∑NDVI 
during 2000–2005 in which deforestation occurred (mean ∑NDVI 8.75 for site 1 and 8.67 for site 2). Non-
significant differences also occur between the (non-)deforested sites with respect to the difference between 
multi-year average ∑NDVI and minimum ∑NDVI (sites 1 and 2). The average difference in standard deviation of 
the annual ∑NDVI values between the sites with/without forest loss is 0.165.  
  

Sites Lon/Lat (degree) Land cover (OSFAC, 2010) Deforestation1 ∑NDVIavg
2 ∑NDVIstdev

3 ∑NDVIavg - ∑NDVImin
4 100(∑NDVIavg - 

∑NDVImin)/∑NDVIavg

Abrupt NDVI 
change5

1 23.178E/2.123N Primary humid tropic forests 30% 8.5179 0.3385 0.5824 6.84 0

2 23.0735E/1.9197N Primary humid tropic forests no 8.6319 0.3131 0.5341 6.19 0

3 28.2261E/6.9629S Woodlands no 7.4641 0.2501 0.6357 8.52 0

4 24.948E/2.8207S Secondary humid tropic forests 20% 8.7399 0.5445 0.8472 9.69 2

5 25.9107E/3.6462N Secondary humid tropic forests no 9.1137 0.2664 0.6657 7.30 1

1 According to OSFAC, 2010
2 NDVIavg = Multi-year mean ∑NDVI (1981-2006)
3 NDVIstdev = Multi-year ∑NDVI standard deviation (1981-2006)
4 NDVImin = Multi-year minimum ∑NDVI (1981-2006)
5 Number of abrupt trend change in NDVI (1981-2006) (according to de Jong et al . 2012)
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7 Discussion and conclusions 

In the previous study of Bai et al. (2012) and in this study, global changes of remotely sensed greenness 
(NDVI) and simulated biomass production (TBW) since 1981 have been analysed for the purpose of mapping 
global soil degradation. The overall objective of the research is to identify areas (grid cells) affected by soil 
degradation which can be used as input for the PBL project ‘Biodiversity, Ecosystem services and 
Development’ to assess the effects of land degradation on future economic development and biodiversity 
around the world (using the global model IMAGE). The impact of climate and human interventions causing 
abrupt changes like de- or reforestation has been examined/quantified in a global context. Ultimately, by 
combining Figure 7, illustrating the non-climate related part of actual changes of estimated mean NPP, with 
Figure A2 (Appendix I), illustrating areas with abrupt NDVI changes as indicator for abrupt land use changes, 
and by taking statistically significant changes of both NDVI and TBW into account (Figures 1 & 2) areas can be 
identified that were exposed to land degradation/improvement. Other factors that cause land degradation/ 
improvement fell outside the scope of the two studies and the results are therefore only the first steps in 
mapping land degradation. Results will be verified in a related project by comparing changes in NDVI and TBW 
with local expert judgment from selected countries/areas. In this section the methodology to assess the loss 
of productivity by soil degradation, as developed in this study, is discussed and options for additional analyses 
and possible improvements are identified. 
 
 In the preparation of the final maps of NDVI, TBW and NPP, the grid cells which were assumed non-vegetated 
according to MODIS during 2000–2006, have been excluded, making these cells ‘invisible’ for the current 
analysis. We do suggest however to perform an additional study to analyze the temporal NDVI dynamics of 
these grid cells, because a negative change would indicate that these areas may have been vegetated at the 
earlier stage of the period 1981–2006 but lost their vegetation towards the end. Vice versa, a positive change 
may point at a re-greening area which may become more vegetated in the future if the positive trend 
continues. Such an exploration could reveal vulnerable areas. 
 
Calculated annual TBW values vary throughout the study period 1981–2006 as a result of varying weather 
conditions. For each grid cell the trend in TBW is estimated through linear regression of TBW on time and the t-
values of the slopes were used to test the significance of the trends. Many slopes were not significantly 
different from zero (Figure 2), which is also supported by the results from the Miscanthus run in the sensitivity 
analysis (Figure 9). This outcome could result from the relatively short study period during which significant 
changes in weather may not have occurred or trends could not be detected due to the large inter-annual 
fluctuations. This can be investigated by performing linear regressions of a number of weather variables on 
time for each grid cell, comparable to the analysis with ∑NDVI and TBW in this study, and calculate the t-values 
of their slopes. If most trends in weather data that are used as input for the model are not significant, then this 
would explain that many calculated TBW changes during 1981–2006 are not significant.   
 
The maps of the climate-induced and the non-climate related NPP change (Figures 6 & 7) being mirror images 
of each other for most grid cells raises questions about the estimations of the actual NPP change as function 
of ∑NDVItrend and the climate-induced NPP change as function of TBWslope. Both an underestimation of the actual 
NPP change by using too low values for the relative change in ∑NDVI and an overestimation of the climate-
induced NPP change by using too high values for the relative change in TBW will cause this mirror effect. 
Although it cannot be concluded that the data of maps are wrongly estimated (for this they should be verified 
with independent data), possible causes of under- and overestimation will be discussed below. Underestimation 
of the actual NPP change may occur because ∑NDVI values as used in our study are based on the sum of a 
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more variable part related to greenness and a more constant part not related to greenness. The more 
constant part refers to NDVI from (bare) soils and not-producing biomass (e.g. yellow grasses during dry 
periods and trees without leaves during cold periods), whereas the more variable part relates to the green 
mass of a vegetation. NPP changes will be more related to changes in the variable part, i.e. the green mass, 
and less to the NDVI value from (bare) soils and non-producing biomass and therefore the correlation between 
NPP change and ∑NDVI change can be improved if only the NDVI values from the ‘actual’ greenness would be 
used. This will give higher values for the relative ∑NDVI changes but effects of this correction on the estimation 
of the actual and non-climate related NPP changes have not been explored in this study. We recommend to 
explore the possibilities of distinguishing between these two parts of the total observed NDVI value and 
recalculate the resulting NPP change maps.   
 
The other cause of the mirror effect which relates to the overestimation of climate-induced NPP change, could 
be explained by the situation that the effects of weather on biomass production may be exaggerated because 
the model calculations refer to the rain-fed production level which is not limited by nutrient shortages, occur-
rence of weeds, pests and diseases, and suboptimal management. Such limitations may interact with the 
effects of weather on biomass production and may dampen changes in TBW related to changes in weather. 
Moreover, adaptation of a vegetation to changing weather conditions, e.g. other species, other characteris-
tics, may also decrease the effect of a change in weather conditions compared to a non-adapted situation 
(which is used in the calculations where only the length of the growing season is adapted per year as function 
of the weather conditions). The sensitivity analysis in this study was aimed at searching for factors that 
influence the relative change in TBW (i.e. TBWslope/TBW) to investigate options for improving the estimation of 
the climate-induced NPP change. Results of this analysis showed that using a C3 perennial species (Reed 
canary grass) instead of a C4 perennial (Miscanthus) did not significantly alter the relative change in TBW. This 
is also concluded for using a reduction factor in the model calculations to mimic nutrient limitations with 
consequently lower (more realistic) production levels. A correction of the current model calculations by 
including irrigated crop lands will also not lead to very different results in the relative TBW change (the effect of 
irrigation on relative TBW change of Miscanthus was small in the sensitivity analysis and the amount of 
irrigated crop land as percentage of total global land area is also small although it can be high in certain 
regions). Overall, we have not found indications that the current model calculations lead to an overestimation 
of climate-induced NPP changes. However, the explanation of the generally larger values of relative TBW 
change (compared to relative ∑NDVI change) needs further investigation to understand and check these 
values.  
The model sensitivity analysis in chapter 5 shows that irrigation had only a modest effect on the relative 
change in TBW of Miscanthus (Figure 12b), while a strong correlation appeared between the relative change in 
TBW and the relative change in cumulative precipitation during the growing season (Figure 11b). These two 
results seem to contradict because irrigation decreases the variation in plant available water during the 
growing season and it was expected that this would also reduce the relative variability in TBW. However, 
besides a small decrease in relative TBW change, both TBW and the TBWslope are affected relatively in a similar 
way, indicating that if the mean TBW increases with x % by irrigation, also the slope of the linear regression 
has increased with almost x %. This suggests that the strong correlation with cumulative precipitation mainly 
originates from a strong correlation with the length of the growing season which is defined by the start and the 
end. Besides suitable temperatures during the growing season (mainly being not too cold), the start of the 
growing season depends on sufficient soil moisture availability at the starting day and beyond which is strongly 
influenced by the (cumulative) precipitation prior to the starting day. On the other hand, the end day depends 
on soil moisture conditions becoming unfavourable for crop production and is therefore affected by 
(cumulative) precipitation towards the end of the growing season. The calculation of starts and ends and 
consequently the length of the growing season is performed without any contribution of (possible) irrigation to 
soil moisture and is therefore equal for rain-fed and irrigated situations in the model calculations. If variation in 
the length of the growing season is the main driver for variation in TBW, it would explain (a) the strong 
correlation of TBW with cumulative precipitation during the growing season because cumulative precipitation 
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will be positively affected by the length of the growing season and (b) also the modest effect of irrigation 
because irrigation does not affect the length of the growing season. This would suggest that the variation in 
TBW is significantly affected by weather conditions outside the growing season. To test this assumption on the 
cause of the variation in TBW some additional (statistical) analyses should be done. 
 
Another option for investigating non-climate related changes in NPP can be studied by using all seven years of 
NPP data separately (2000–2006; in this report only the average values from this period have been used) and 
calculating the slope of NPP against time (n = 7) for each grid cell. These NPP slopes can be correlated to (a) 
∑NDVItrend and (b) TBWslope (both then also calculated for 2000–2006) in two separate regressions linking the 
change in ∑NDVI and in TBW directly to the change in NPP (note: these slope calculations are now only based 
on 7 data points for each grid cell). It can be assumed (like in this study) that relations of 2000–2006 also 
apply to 1981–2006. Total change in NPP can be calculated as function of ∑NDVItrend of 1981–2006 and the 
relation between NPP slope and ∑NDVItrend from 2000–2006 and climate-induced part of the actual change in 
NPP can be found by TBWslope of 1981–2006 and the relation between NPP slope and TBWslope from  
2000–2006. This procedure of direct correlation (NPP slope, ∑NDVItrend and TBWslope) may avoid possible over- 
or underestimation of the non-climate related NPP changes, but the ‘disadvantage’ lies in the short period and 
consequently small amount of data points per grid cell that can be used for these correlations (n = 7), which 
makes it more difficult to produce significant changes due to changes in weather. This alternative analysis has 
not been done due to this disadvantage and the limited budget. 
 
In this study a start has been made with developing a methodology towards mapping global soil degradation.  
It is assumed that soil degradation is a relatively slow process taking place during many years and that abrupt 
land use change occurs within a few years. Abrupt land use changes (such as caused by wildfire or defores-
tation) might be represented by negative values in Figure 7 (illustrating the non-climate related part of actual 
change of estimated mean NPP), but do not indicate soil degradation. It is assumed that abrupt land use 
changes correlate with abrupt changes in NDVI and therefore it is investigated in this study whether and how 
time series of annual ∑NDVI can be used to detect abrupt land use changes. For this purpose twenty locations 
around the world with known changes/no changes in land use were selected and corresponding time series of 
annual values of ∑NDVI from1981 to 2006 were extracted from the global data set. These time series have 
been displayed for each location to illustrate any abrupt NDVI changes that can be linked to the known 
changes in land use, deforestation and wildfire. 
 
Three variables based on annual ∑NDVI were calculated, i.e., multi-year average annual ∑NDVI, minimum annual 
∑NDVI and annual ∑NDVI standard deviation over the period of 1981−2006. The multi-year mean annual ∑NDVI 
values for the 20 selected sites are different: highest for the dense forest (average of 8.5 in the DRC case) 
and lowest for the needle-leaved forest and shrub (3.95 in the SE Russia case). The annual ∑NDVI values from 
1981 to 2006 vary significantly with an average standard deviation of 0.371 ranging from 0.173 to 0.749; the 
differences between the multi-year mean annual ∑NDVI and minimum ∑NDVI vary for different land cover types 
from 0.375 to 2.231 with an average value of 0.861.  
 
The difference between multi-year mean annual ∑NDVI and minimum annual ∑NDVI was initially calculated for 
the detection of abrupt NDVI changes. Results of a tentative threshold, i.e. (∑NDVIavg - ∑NDVImin) ≥ 1.454 
applied to the Chaco region, indicated that about one quarter of the grid cells with a difference larger than this 
threshold has the changes in land use. The multi-year mean annual ∑NDVI for the 20 selected sites vary with 
highest values for the dense forest and lowest values for needle-leaved forest and shrub and the differences 
between the multi-year mean annual ∑NDVI and minimum ∑NDVI also vary for different land cover types. 
Therefore, it is not recommended to obtain a threshold from these differences of the ‘absolute’ values and to 
apply this threshold to all land cover categories at the global scale, because the annual ∑NDVI of the different 
land cover types are different. It should only be applied to locations with homogeneous land cover and change, 
for example in the Chaco region of Argentina where 95% of the land use change are from forest to crop. As an 
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alternative option the ratio between the difference of the multi-year mean annual ∑NDVI and minimum ∑NDVI 
and the multi-year mean annual ∑NDVI, i.e., 100(∑NDVIavg - ∑NDVImin)/∑NDVIavg) was calculated for each location, 
and a ratio of 20% is tentatively set as threshold. Results from this threshold of 100(∑NDVIavg - 
∑NDVImin)/∑NDVIavg) applied to the Chaco region indicated that about 24% of the grid cells with a ratio larger 
than this threshold have the changes in land use.  
 
The global abrupt NDVI trend change by de Jong et al. (2012) was detected using fortnightly time series from 
1982 to 2008 and many abrupt changes were found around large-scale natural influences like the Mt Pinatubo 
eruption in 1991 and the strong 1997/98 El Nino event. Yet, it is difficult to compare this abrupt NDVI change 
with global consistent time series data on land use changes for the period of 1981−2006 which are not 
available or not compatible with the GIMMS data period. Comparison of the known changes in land use at the 
selected sites (20) with the abrupt NDVI trend change by de Jong et al. (2012) indicates that 8 out of 11 sites 
with known land use change show the abrupt NDVI trend change and 5 of the 9 sites without land use change 
show no abrupt NDVI trend change. For the annual NDVI data from this study and using the ratio as indicator 
with 20% as threshold, the results of detection are: 5 out of 11 sites and 9 out of 9 sites.  
 
However there are some inherent limitations using GIMMS NDVI dataset to detect changes in land use at either 
fortnightly or annual footprint: (1) the coarse spatial resolution of the NDVI dataset: an 8x8 km2 pixel integrates 
the signal from a wider surrounding area, while changes in land use or deforestation rarely extend over such a 
large area and they must be severe indeed to be detected against the signal of the surrounding unaffected 
areas. This coarse spatial resolution prevents a general detection of land use change, even using higher 
temporal resolution of NDVI time series (fortnightly in this case); (2) it is assumed that abrupt land use changes 
correlate with abrupt changes in NDVI, however abrupt NDVI changes could also have occurred, e.g. because 
of large-scale ecosystem disturbances such as fires, volcanic eruptions and strong El Niño events, which all 
directly influence the NDVI values e.g. by affecting the reflection of red and near-infrared light. These causes 
might be distinguished step by step and case by case but globally it might appear difficult due to lack of 
consistent time series data on fires, volcanic eruptions and strong El Niño events.  
 
In addition, other variables can be derived that may perform better than the selected indicators for detection of 
abrupt NDVI change. For example, by computing the differences between annual NDVI of consecutive years 
(this will give 25 values from 1981 – 2006) and comparing the minimum difference (most negative value) with 
the average of all differences which are negative. With a threshold, e.g. the minimum exceeds two times the 
average decline, cells can be detected that experienced a large (more than average) decline during  
1981 – 2006 which could indicate land use change, such as deforestation. The value of the threshold may be 
derived from an analysis of cells with and without known land use change. Applying this approach on the 
positive differences, land use changes with increasing annual NDVI values like forestation could be detected as 
well. Cells that have this characteristic of abrupt change (either postive or negative) can be set aside when 
searching for soil degradation/improvement because a negative or positive trend of annual NDVI in these cells 
during 1981-2006 could be due to land use changes rather than degradation or improvement (assuming both 
to be slower processes). Global trends of this new indicator should be checked case by case with known 
changes in land use as was done in this study.  
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Appendix I  Global mapping of abrupt changes 

 

Figure A1 
Differences between multi-year mean ∑NDVI and minimum ∑NDVI during 1981–2006  

 

 

 
Figure A2 
Percentage of (Mean ∑NDVI – Min ∑NDVI) / Mean ∑NDVI from 1981–2006. 
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Figure A3 
Standard deviation of annual ∑NDVI from 1981–2006. 
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