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1 Background 

1.1 The need for a new assessment 

The global food- and eco-system will encounter unprecedented pressures over the next few decades, as 
agricultural production must increase by 70-100% to feed over 9 billion people by 2050. This is further 
compounded by the growing demand for non-food items such as biofuels and biomaterials. There is compelling 
evidence, however, that the productive capacity of cropland is degrading. Estimates of the rate at which this is 
happening, globally, and the costs incurred in terms of productivity and economic losses, and how 
this impacts on food security are extremely variable and uncertain because of (i) uncertainties in underlying 
information; (ii) lack of an objective definition of land degradation; (iii) methodological weaknesses to relate 
changes in productivity to land degradation or other variables (e.g. climate or management) and (iv) different 
system boundaries used in different estimates (types of land degradation accounted for; inclusion or not of off-
site effects) (Pimentel et al., 1995; Trimble & Crosson, 2000; Lal, 2007; Wilkinson & McElroy, 2007; 
Sonneveld & Dent, 2007; Telles et al., 2011). Even at the local level, it is still a challenge to quantitatively 
assess the effects of soil degradation on crop yields (WOCAT, http://www.wocat.net/). As a consequence, 
land degradation appears to be underemphasized on national and international policy agendas (Nkonya et al., 
2011) and the investments required to safeguard future food security are unknown. 
 
Land degradation is a phenomenon that leads to the decline in productivity of agro-based goods and 
ecosystems services. Yet, land can be used for a range of other functions like urbanisation and industry for 
instance, which are considered valuable but not contributing to agro-ecological functions. Balancing different 
functions is at the heart of any decision related to land use, certainly so as it affects people most that rely 
directly on land resources for their livelihoods.  
 
If interpreted appropriately, up-to-date quantitative information about land degradation can support policy 
decision making on balancing such needs, including food and water security, economic development, 
environmental integrity and resource conservation. However, rather than doing this by the conventional 
approach of classifying areas affected by degradation and then determining its impacts, which incurs loss of 
information and fruitless discussions about class boundaries, a more integrated approach appears to be more 
promising. This would aim at the assessment of changes in land attributes which, through the use of 
mechanistic models and supported by empirical findings could then be translated in changes in ecosystem 
functioning or goods and services (e.g. agricultural productivity, carbon storage, water regulation). This 
integrated approach is followed in a comprehensive modelling exercise ‘IMAGE-GLOBIO’ by PBL Netherlands 
Environmental Assessment Agency with explicit attention to the relation between economic activities and 
biodiversity.  
 
Land may degrade due to a wide range of activities including changes in land use, unbalanced nutrient 
management, inappropriate soil tillage leading to erosion, salinization due to inappropriate irrigation or 
reduced precipitation etc. The productivity of land, i.e. the amount of biomass that can be produced, is 
affected by degradation. Yet, the relation between ‘land degradation’ and ‘biomass productivity’ is not 
straightforward and needs accurate understanding of soil processes in relation to climate, plant growth and 
management. Higher level integration through the ‘IMAGE-GLOBIO’ approach will advance this primary relation 
between ecosystems/biodiversity, land productivity, economic development and poverty. The scope of this 
research relates specifically to land degradation and biomass productivity.  
 

http://www.wocat.net/
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1.2 Indicators 

Land degradation may be defined as a long-term loss of ecosystem function and productivity caused by 
disturbances from which the land cannot recover unaided (Bai et al., 2008a,b). It may be measured by the 
change in net primary productivity (NPP – the difference between the rate at which the plants in an ecosystem 
produce useful chemical energy and the rate at which they use some of that energy during respiration); 
deviation from the norm may be taken as an indicator of land degradation or improvement. As a proxy, the 
remotely sensed normalized difference vegetation index (NDVI, or greenness) has been shown to be related to 
biophysical variables that control vegetation productivity and land/atmosphere fluxes (Hall et al., 2006) such 
as: leaf area index (Myneni et al., 1997), the fraction of photosynthetically-active radiation absorbed by 
vegetation (Asrar et al., 1984), and NPP (Alexandrov & Oikawa, 1997; Rasmussen, 1998a, b). It has also been 
used to estimate vegetation change, either as an index (Anyamba & Tucker, 2005; Olsson et al., 2005) or as 
one input to dynamic vegetation models (Nemani et al., 2003; Seaquist et al., 2003; Fensholt et al., 2006). 
Consistent time-series data at spatial resolutions from 20m to 8km (Brown et al., 2006) enable analysis and 
generalization. 
 
A decreasing trend in NDVI does not necessarily indicate land degradation, nor does an increasing trend 
necessarily indicate land improvement. Biomass depends on several factors including: climate - especially 
fluctuations in rainfall, sunshine, temperature and length of growing season; land use; large-scale ecosystem 
disturbances such as fires; and the global increase in nitrate deposition and atmospheric carbon dioxide. To 
interpret NDVI trends in terms of land degradation or improvement, we have to eliminate false alarms, in 
particular those arising from climatic variability and land use change. Globally, this can be done for climate, for 
which a century’s consistent data are available (Bai et al., 2008a), but global time series are not yet available 
for land use which has to be examined case-by-case.  
 
Total biomass production (TBW) can serve as an integral indicator that accounts for the impact of climate 
variables, including temperature and rainfall, in interaction with crop and soil properties. The combination of 
satellite-based estimation of NDVI and calculated TBW based on long-term series of climatic data and constant 
crop and soil properties is used in this study to disentangle the likely impact of climate from other causes on 
the observed trends in NDVI. 
 
NDVI is a ratio of red and near-infrared light reflected by the Earth’s surface. To provide a more tangible 
measure of land degradation, the NDVI in this study is correlated to net primary productivity (NPP) using 
MODIS (moderate-resolution imaging spectroradiometer) NPP data (Running et al., 2004) for the overlapping 
period 2000-2006.  
 
 
1.3 Research objective 

This research is a component of PBL project on the Biodiversity, Ecosystem Services and Development 
(Biodiversiteit, ecosysteemdiensten en ontwikkelingsvraagstukken). The ultimate goal of the PBL project is to 
gain a quantitative understanding of the interrelations between ecosystem degradation and economic 
development, particularly with regard to food- and water security in developing countries. 
 
The ultimate goal of this research component of the PBL project is to develop a quantitative methodology to 
relate soil degradation to biomass production and assess the loss of productivity world-wide due to soil 
degradation.  
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The objective of the research described in this report is to quantify trends in land degradation and biomass 
productivity over the past three decades and discuss the findings in order to identify future research avenues 
to better identify the causes and/or further refine the approach. 
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2 Data and methodology 

2.1 NDVI 

The Normalized Difference Vegetation Index (NDVI) is calculated from the red (RED) and near-infrared (NIR) light 
reflected by the Earth’s surface, i.e., NDVI = (NIR-RED)/(NIR+RED), and is used as a measure of vegetation or 
greenness. The NDVI data used in this study are produced by the Global Inventory Modelling and Mapping 
Studies (GIMMS) group from measurements made by the AVHRR radiometer on board of the US National 
Oceanic and Atmospheric Administration satellites (US-NOAA) (Tucker et al., 2004; Pinzon et al., 2007). The 
fortnightly images at 8km-spatial resolution, derived from daily 4 km global area coverage are corrected for 
view geometry, volcanic aerosols, and other effects not related to vegetation cover(Tucker et al., 2005). The 
maximum-value-composite (MVC) technique is used to remove bias caused by atmospheric conditions (Holben, 
1986). Orbital drift correction is performed using an empirical mode decomposition (EMD) transformation 
method of Pinzon et al. (2005) removing common trends between time series of solar zenith angle (SZA) and 
NDVI. Orbital decay and changes in NOAA satellites affect AVHRR data but processed NDVI data have been 
found to be free of trends introduced from these effects (Kaufmann et al., 2000). No atmospheric correction is 
applied to the GIMMS data except for volcanic stratospheric aerosol periods (1982–1984 and 1991–1994) 
(Tucker et al., 2005); some uncertainty still remains, especially in hazy and cloudy conditions (Nagol et al., 
2009). To remove any residual cloud effects or other outliers, the Harmonic Analysis of NDVI Time-Series 
(HANTS) algorithm (Verhoef et al., 1996; Roerink et al., 2000; Wit & Su, 2005) has been applied to smoothen 
and reconstruct the NDVI time-series (Jong et al., 2011); the HANTS-reconstructed data from July 1981 to 
December 2006 was employed in this study. 
 
 
2.2 TBW 

Total annual production of biomass (TBW) was calculated for each year in the period 1981-2006 with the crop 
model LINPAC (Conijn et al., 2011; Jing et al., 2011) and refers to the rain-fed production level, i.e. optimum 
management but not irrigated, ample nutrient availability and free from pests, diseases and weeds. The model 
has a time step of one day and calculates daily biomass increase based on crop characteristics, soil and 
weather data: including soil texture, soil depth, soil water holding capacity, radiation, temperature, 
precipitation, vapour pressure and wind speed. Daily soil water availability and (evapo)transpiration following 
from a soil water balance calculation, and daily leaf area growth are intermediary variables. Accumulation of 
daily biomass production over the season leads to total biomass production and yield. Prior to the biomass 
calculation, the suitability of each location for cropping is checked per year as function of temperature, soil 
water availability and crop characteristics leading to calculated sowing and harvesting dates of all crop cycles 
in a year. For annual crops the number of cycles per year ranges from 0 to an assumed maximum of three and 
is found by ‘fitting’ temperature sum requirements of a crop into the period of suitable growing days per year 
(see also Conijn et al., 2011). For perennial vegetation the plant growth period equals the period of suitable 
growing conditions. For this study two runs were separately executed to calculate the biomass production of 
an annual and a perennial vegetation and TBW has been found by combining the results of the two runs on the 
basis of the crop land fraction (fcrop) in each location: 
 
TBW = fcrop * TBWannual + (1 – fcrop) * TBWperennial 

if TBWannual = 0, then TBW = TBWperennial; if TBWperennial = 0, then TBW = TBWannual. 
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Time series of gridded weather data (monthly averages/totals) from the Climate Research Unit (CRU, 2011) 
were used as input with a resolution of 30x30 arc-minutes. Daily values are calculated by a random distribution 
function for precipitation and by linear interpolation for the other climate variables. Soil characteristics were 
obtained from the ISRIC-WISE v1.0 database (Batjes, 2006) in combination with the Digital Soil Map of the 
World from FAO with a resolution of 5x5 arc-minutes (FAO, 1996). The land use map of Erb et al. (2007) was 
used to estimate the crop land fraction with a resolution of 5x5 arc-minutes. The annual crop has been 
approximated by taking the characteristics of a wheat/maize crop as input (wheat for temperate and maize for 
tropical regions) and those of Miscanthus to represent the perennial vegetation. Some parameters were 
adapted to ensure that in locations with short growing seasons (e.g. in dry or cold climates) vegetation types 
with shorter growth cycles compared to wheat, maize or Miscanthus could also be simulated. 
 
Because soil and crop characteristics are kept constant, the impact of changes in climate over time on 
biomass production can be estimated.  
 
 
2.3 MODIS NPP 

MODIS (Moderate-Resolution Imaging Spectro-Radiometer) MOD17A3 is a dataset of terrestrial gross and net 
primary productivity, computed at 1-km resolution at an 8-day interval with daily MODIS land cover, FPAR/LAI 
and global GMAO surface meteorology at 1km for the global vegetated land surface (Heinsch et al., 2003; 
Running et al., 2004; Zhao et al., 2005; Zhao & Running, 2010). The dataset produces gross primary 
production of vegetation every day, and sums to net primary production, essentially vegetation growth, at the 
end of the year. The NPP data have been validated in various landscapes (Fensholt et al., 2004; 2006; 
Gebremichael & Barros, 2006; Turner et al., 2003; 2006) indicating that the calculated NPP are reliable at the 
regional scale (Zhao et al., 2005; 2006). The MOD17A3 is continuously produced and available till 2010; the 
improved MOD17A3 from 2000 through to 2006 which matches the available HANTS-reconstructed NDVI 
dataset is used in this study to indicate non-vegetated areas for which NPP is assumed zero and to correlate 
with NDVI.  
 
 
2.4 Analytical method  

The fortnightly NDVI data were averaged to monthly, then aggregated to an annual scale, expressed as annual 
sum NDVI (∑NDVI), ranging from 0 to 12, unitless. Annual sum NDVI indicator is computed pixel-by-pixel for a 
calendar year from the first of January to the end of December, and taken to represent annual accumulated 
greenness. Multi-year mean values for each pixel were calculated for the two indices (∑NDVI, TBW) over the 
period 1981-2006; their temporal trends were calculated for each pixel by linear regression at an annual 
interval. Both mean values and trends were mapped globally to depict spatial patterns. A negative slope of 
linear regression indicates a decrease of ∑NDVI and calculated biomass production (TBW) and a positive slope, 
an increase. Positive and negative slopes of both indices were compared at a pixel level and mapped to 
illustrate differences in temporal trends. Absolute changes of ∑NDVI and TBW per pixel during 1981–2006 are 
presented by the estimated slope values and subsequently, percentage changes have been calculated relative 
to the mean value of the whole period, i.e., 100(slope/multi-year mean). The resolution of NDVI is resampled to 
5x5 arc-minutes to match that of the TBW.  
 
Linear regression was also applied to illustrate the relation between (1) NPP as function of ∑NDVI and (2) ∑NDVI 
as function of TBW, taking the mean pixel values of all relevant pixels world-wide, i.e. from vegetated areas 
(according to the MODIS NPP data set). 
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3 Result and discussion  

3.1 ∑NDVI 

Globally, annual sum NDVI (∑NDVI, or greenness) increased by 2.8 per cent over the period 1981-2006 
(P<0.001), revealing an overall greening of the World-wide (Fig. 1). However, there are major regional 
differences. Figures 2 to 4 depicts the spatial patterns of 26-year mean annual ∑NDVI and trends over the 
period 1981-2006.  
 
The patterns of greenness are in line with general perceptions and land cover map (JRC, 2003, See Appendix 
I) with rainforests near the equator (dark green indicating high ∑NDVI) and low ∑NDVI values near the fringes of 
deserts and polar areas. The changes in greenness (Fig. 3) suggest a general decline in areas with high ∑NDVI 
and improvements in some fringes of deserts such as in the Sahel and the Kalahari, The eastern part of the 
Indian continent, Inner Turkey, Northern America, Siberia and Western Australia. Relative changes are large 
where mean value of ∑NDVI is low, but these patterns remain visible when changes are expressed in absolute 
terms (Fig. 4). 
 
 

 

Figure 1.  

Trend of total mean annual sum NDVI during 1981-2006 for the whole World. 
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Figure 2.  

Global pattern of mean annual sum NDVI (∑NDVI) for the period 1981–2006.  

 

 

Figure 3.  

Global pattern of percentage changes of ∑NDVI for the period 1981–2006.  
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Figure 4.  

Global pattern of absolute changes of ∑NDVI for the period 1981-2006.  

 
 
3.2 TBW 

Figures 5 to 7 show the spatial patterns of the mean, percentage and absolute changes of calculated rain-fed 
biomass production of annual and perennial vegetation combined (TBW). 
 
Mapping the mean TBW clearly illustrates the effect of climatic conditions on the calculated capacity to 
produce biomass in the world (Fig. 5). Dark green colours are found in areas of tropical rain forests and light 
green dominate near dry and cold climates. In deserts and very cold areas a zero biomass production is 
calculated (white colour), because these conditions are too harsh for vegetation to survive. In the calculation 
for this study, irrigation has not been taken into account which means that current irrigated production areas 
will not emerge as green areas, such as the Nile Delta. The patterns are comparable to those of Figure 2. 
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Figure 5.  

Calculated mean annual rain-fed biomass production TBW for the period 1981-2006 (tonne dry matter ha-1 y-1). 

 
 
The changes in biomass production over the period 1981-2006 show some marked declines in areas like 
France, the Baltic region, Chile, Western USA, Northern China, Northern India and Eastern Australia (Figs. 6-7). 
These changes suggest that, over the past three decades, the weather conditions in these areas have 
developed unfavourably for biomass production. 
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Figure 6.  

Percentage changes of calculated rain-fed biomass production TBW for the period 1981-2006. 

 

 

Figure 7.  

Absolute changes of calculated rain-fed biomass production TBW for the period 1981-2006. 
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3.3 Comparing trends of ∑NDVI and TBW 

The changes in ∑NDVI and TBW are illustrated by a 4-color map of the world at 5 by 5 arc-minutes resolution 
depicting combinations of positive and negative changes. Any change below 5% over the analysed period of 
26 years is masked white so that only the larger changes will appear on the map (Fig. 8). The following 
tentative explanation of the different combinations can be given: 
a. Positive ∑NDVI and positive TBW change. The improved greenness (∑NDVI) might be totally or partly 

explained by improved weather conditions as these are the cause for the increase in TBW. A relatively low 
positive ∑NDVI change and high positive TBW change could even indicate that deteriorating conditions of 
e.g. soil and land use have had a negative effect on the vegetation, but have been masked by the larger 
positive effect of climatic changes. 

b. Positive ∑NDVI and negative TBW change. Worsening climatic conditions decreased TBW but rather than an 
expected negative effect on ∑NDVI, the greenness has improved. This is possibly caused by favourable 
interventions like irrigation, fertilization, increasing atmospheric CO2 concentrations, deposition of reactive 
nitrogen, or reforestation. Hence favourable human interventions or natural changes could have caused 
these combined trends. 

c. Negative ∑NDVI and positive TBW change. The greenness declines against a trend of expected positive 
change from climatic conditions. It is likely then that other factors such as deforestation or severe soil 
degradation have had a larger impact on the productivity. 

d. Negative ∑NDVI and negative TBW change. The decline in greenness may have resulted (partly) from 
worsening climatic conditions. Here a stronger decline in ∑NDVI over TBW could also indicate a worsening 
of soil conditions or land use change, like deforestation. 

 
 

 

Figure 8.  

Global illustration of areas with positive or negative change in greenness (∑NDVI) and climate-related capacity to produce biomass 

(TBW) during 1981 to 2006. Pixels (5 by 5 arc-minutes) with low change rates of both variables (less than 5% for the entire period) 

are not shown.  
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Figure 8 clearly shows that most pixels in the world have changes that exceed our 5% threshold for at least 
one of the two indices (excluding large deserts and very cold areas, like Greenland) and that in many regions 
the coloured pixels are grouped into larger areas. Positive changes in both ∑NDVI and TBW (green) feature in 
the Sahel region, the Kalahari, Russia, Northern Australia and Eastern parts of USA. Also the Southern part of 
India and south east Europe, including Turkey experience improving conditions. 
 
The positive changes in ∑NDVI combined with negative in TBW (blue) in north-east Europe, Northern 
China, Northern India, the mid-western part of USA and southern Australia tend to have been positively 
influenced by human interventions despite the fact that weather conditions reduced the productivity. 
 
Negative changes in ∑NDVI combined with positive in TBW (red) in parts of Africa, Indonesia, Canada, Alaska 
and Siberia suggesting deforestation, soil degradation or other causes that deteriorated the productivity 
despite improved weather conditions. 
 
Both negative ∑NDVI and negative TBW are found in Kazakhstan, North China, the Chaco in Northern Argentina, 
and Western Australia suggest that these regions have been experiencing worsening conditions either climatic 
change or management of soil use. 
 
 
3.4 Relations between ∑NDVI, TBW and NPP 

Figure 9 shows the relation between mean values of annual ∑NDVI and NPP for the period 2000–2006 at 
spatial resolution of 4.36 by 4.36 arc-minutes for all data points and for 1% random sampling of all data. While 
these variables are significantly correlated (r2 = 0.7), the graph clearly indicates that a straightforward 
conversion of ∑NDVI into NPP by the linear regression cannot be justified:  
 
NPP = 1.26 * ∑NDVI − 1.53 (n = 2,450,665; r2 = 0.70) (1) 

 
 

 

Figure 9.  

Scatter plot of the relation between ∑NDVI and NPP: left - all data; right - 1% of the all data sampled randomly. 

 
 
Nonlinear correlations between ∑NDVI and NPP and other factors affecting this relation need to be identified 
for any sensible conversion.  
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Figure 10 shows the relation between annual ∑NDVI and square root of TBW for the period 2000–2006 
at spatial resolution of 5 by 5 arc-minutes for all data points and for 1% randomly sampling of all data.  
 
 

 

Figure 10.  

Scatter plot of the relation between TBW and ∑NDVI (only vegetated pixels were selected): left - all data; right - 1% of the all data 

sampled randomly, including the regression line from equation 2, based on all data.  

 
 
The regression coefficients of the correlation between ∑NDVI and the square root of TBW is given below in 
equation (2) and their estimated standard errors are 0.0019 and 0.00042, respectively, for the intercept and 
the slope.  
 
∑𝑁𝐷𝑉𝐼 = 0.71 ∗ √𝑇𝐵𝑊 + 1.80 (n = 1,727,651; r2 = 0.62) (2) 

 
Although the percentage variance accounted for is 62%, the variation of the data relative to the regression line 
still remains high (Fig. 10). The use of the square root of TBW in equation (2) indicates that the relation 
between ∑NDVI and TBW is curve-linear and that the increase of ∑NDVI as function of TBW decreases at higher 
levels of TBW. This curvature could be explained because NDVI values are not likely to increase much further 
once the canopy is closed (depending on the crop at a Leaf Area Index (LAI) of about 3-5), while the rate of 
biomass production has been found to continue to increase up to LAI values of 6-8 (Myneni et al., 2002; Jones 
& Vaughan, 2010). A straight line between ∑NDVI and TBW gave a lower percentage accounted for and also a 
much higher estimation of the intercept with a value of 3.00. This intercept gives the value for ∑NDVI at TBW = 
0 and theoretically should approach the mean ∑NDVI of non-vegetated areas, which equals circa 1.1. 
 
In the study of Global Assessment of Land Degradation and Improvement (GLADA) (Bai et al., 2008a, b), rain-
use efficiency (RUE) was used to adjust NDVI change over 1981-2003 due to changes in rainfall, and 
temperature, i.e., RUE-adjusted NDVI approach, and the adjusted changes in NDVI were translated to net 
primary production using MODIS data for the overlapping period 2000-2003 for an economic analysis. 
However, this adjustment has limitations in areas where surplus rainfall occurs and does not take rainfall 
distribution and other weather variables into account. 
 
This study, conducted for the extended period of 1981-2006, advanced the RUE-adjusted approach by using a 
soil-crop model (LINPAC) which includes both weather and soil properties to estimate rain-fed biomass 
production and can be used to adjust NDVI due to changes in climate. The above-illustrated relations of NDVI to 
TBW and NPP after further verification can help to ultimately estimate losses of biomass production due to soil 
degradation. 
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However, there are some caveats when applying these methodologies globally: 
1) The NDVI signal can be saturated at closed vegetation canopy (Ripple, 1985). This implies that NDVI is 

more sensitive for cropland and rangeland than for forest; however, it is still useful for forests because the 
canopies of many forests e.g., deciduous forest and pine in the world are not closed (Illera et al., 1996; 
Wang et al., 2004; 2005); 

2) The large spatial variability of rainfall in dry lands makes interpolation of point measurements problematic, 
and weather observation stations are sparse in many of these areas with considerable uncertainties in 
gridded climate data as a result. 

3) TBW has been calculated for a limited number of vegetation types and with predefined management level. 
E.g. irrigation has not been taken into account and in irrigated areas the effects of climate will be different 
from the calculated results. 
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4 Conclusions 

PBL – the Netherlands Environmental Assessment Agency - uses a higher level integration approach through 
the ‘IMAGE-GLOBIO’ model to relate land degradation to biomass productivity, and further, to economic 
activities and biodiversity. However, the assessment of the impacts of land degradation on biomass 
productivity is not straightforward and needs accurate understanding of soil processes in relation to climate, 
plant growth and management. To support the approach of PBL, ISRIC and PRI-WUR have jointly analysed the 
global patterns and trends in greenness (represented by ∑NDVI) and simulated annual biomass production 
(TBW). Decreasing levels of ∑NDVI could indicate land degradation but should be adjusted first by a correction 
with other causes of change in ∑NDVI, such as changes in climate. 
 
Overall ∑NDVI, as a proxy for greenness of the world, increased with circa 1% per decennium during 1981-
2006. This rate is statistically significant with p < 0.001 and may also be relevant, e.g. in relation to CO2 
fixation by the world’s vegetation. More research is needed to quantify the effects.    
 
The global spatial patterns of ∑NDVI and TBW appeared similar, but the temporal changes were different 
leading to distinct areas where (a) both increased, (b) both decreased, (c) an increase in ∑NDVI was linked to a 
decrease in TBW and (d) vice versa. Because changes in simulated TBW are only caused by changes in 
weather, comparison of the trends in ∑NDVI and TBW have been used to qualitatively describe the impact of 
climate changes on changes in ∑NDVI. If a decline in ∑NDVI can be explained by a negative trend in climatic 
conditions, it is not an indication for land degradation, while at the other hand, an increase in ∑NDVI does not 
necessarily exclude land degradation if climatic conditions have improved. 
 
The relations of NPP as function of ∑NDVI and ∑NDVI as function of TBW have been established by linear 
regression and a considerable amount of variation could be explained (R2 > 60%). Still, the scatter plots of 
both seem to reveal a large variation around the regression line, as can be concluded by visual check, which 
indicates that the calculations of NPP and ∑NDVI are surrounded by much uncertainty. Investigating possible 
co-variables of the relationships, e.g., vegetation type, climatic zone, etc., might lead to more precise results. 
 
In this study we have developed a methodology that can be used to estimate the impact of land degradation 
on biomass production. This methodology can be applied globally with a high spatial resolution and can 
therefore contribute very well to answer PBL’s questions but needs further refinement, verification and should 
be extended with non-climate related causes of changes in land productivity. In the next chapter we give some 
suggestions for a follow-up to advance the methodology further to the needs of PBL. 
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5 Recommendations to advance the 
analysis 

The current analysis shows some interesting features with regards to the trends in changing productivity and 
possible causes. Yet, for more conclusive findings, refinement of the current methodology is suggested. We 
would like to suggest the followings as follow up:  
 
A. Finalizing the assessment of climatic effects on change in NPP 

A global map of NPP change during 1981-2006, corrected for effects of changes in climate, will be 
developed. To obtain this in a scientifically sound way, first the relation between NPP and NDVI should be 
studied in more detail, especially related to the form of this relationship (linear, curve-linear, saturation-
type, etc.) and whether different equations should be used for different parts of the world (e.g. depending 
on climatic conditions, growing season length, type of vegetation, etc.). The form of the relation(s) 
between NPP and NDVI can also be used for the relation between NDVI and TBW. Ultimately, the 
derivative of the relation of NDVI as function of TBW can be used to ‘adjust’ NDVI for climate-related 
effects and the climate-adjusted NDVI can be used to calculate climate-adjusted NPP change. This will be 
illustrated in a global map with a 5x5 arc-minute resolution. 

 
B. Verification of the observed/calculated trends with independent data 

The observed trends of NDVI and TBW will be verified for selected areas where ‘field’ data have been 
observed in the past. First the existing map of NDVI/TBW changes already obtained by excluding grid 
cells with less than 5% change over 1981-2006 will be adjusted to exclude those areas which are not 
statistically significant (by using a student’s t-test with e.g. 90% confidence level). The resulting map will 
be used to select areas and compare with information ‘on-the-ground’. Such information could be 
obtained for instance from existing projects and databases on soil degradation, such as WOCAT (World 
Overview of Conservation Approaches and Technologies, http://www.wocat.net/) and regional/national 
experts. This will be done as much as possible for all four combinations of positive and negative trends 
for both NDVI and TBW to verify the four divergent situations as depicted in Figure 8. A second aspect of 
verification will be performed by comparing the NPP data from MODIS with the calculated TBW for the 
same period (2000-2006). Theoretically, TBW data, illustrating the capacity to produce biomass, should 
be higher than NPP. The ratio of NPP and TBW (i.e. NPP as fraction of TBW) will be calculated and 
spatially checked for inconsistencies. Other literature data will be investigated too and if necessary, TBW 
data can be improved.  

 
C. Further explanation of NPP change to distinguish soil degradation from other causes 

The climate-adjusted NPP change can not only be attributed to soil degradation. Other changes may have 
affected the NPP and other data with a global spatial coverage will be studied that can be used as source 
to further disentangle the NPP change into a number of underlying causes, including soil degradation. 
Possible options are: geo-referenced changes in land use, fertiliser use, irrigation, abandoned agricultural 
areas, atmospheric N deposition, large flooding areas, etc. The effect of atmospheric CO2 rise on 
productivity increase will be another part of this study and should be investigated as function of site 
conditions that co-determine how much of the CO2 increase affects biomass productivity. It will be 
checked where the change in CO2 can significantly have affected the NPP change during the period with 
available data (1981-2006). Linkage of the NPP changes to the socio-economic data could also be 
explored. 

http://www.wocat.net/
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Appendix I.  
The global land cover for the year 2000  
(JRC, 2003) 
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