Working Paper and Preprint No. 88/8

A MODEL FOR A SOILS AND TERRAIN DIGITAL DATABASE

tohae

INTERNATIONAL SOIL REFERENCE AND INFORMATION CENTRE }

IS pT S T |

Working Paper and Preprint 88/8

A MODEL FOR A SOIL AND TERRAIN DIGITAL DATABASE

Development of a database structure for SOTER and implementation in a -

Relational Database Management System (RDBMS)

Prepared by John H.M. Pulles
as a M.Sc. study, Wageningen Agricultural University,

in the framework of the GLASOD project, ISRIC.

September, 1988

TABELE OF CONTENTS

SUMMARY

PREFACE

1. INTRODUCTION

2. OBJECTIVES OF STUDY .
3. SYSTEM ANALYSIS

4. THE DATABASE MODEL

4.1 The data model
4.2 Implementation of the data structure

5. APPLICATIONS

5.1 ORACLE Interactive Application Facility .

5.2 Creation and maintenance of domains
6. CONCLUSIONS AND RECOMMENDATIONS
LITERATURE
ANNEX A. Creation of SOTER database tables.
ANNEX B. Tuple, table and database constraints.
ANNEX C. Block triggers in IAP forms.
ANNEX D. IAP Screens

ANNEX E. Oracle Call Interface

12

12
13

15
16
17
21
24
26
30

SumMMakRY

In August 1986, the SOTER Project was started. Its objectives
were to produce a World Soils and Terrain Digital Database at a
map scale of 1:1M, in order to improve the mapping and monitoring
of world soils and terrain resources, and to be able to provide
accurate information about them to planners.

The first phase of the project is to be completed at the end of
1989. At that time, a universal legend has to be adopted. a
database must have been tested on data from selected pilot areas.
and a geographic information system must have been selected.

At this early stage, the future use of the database, which kind
of transactions will prevail, is still not clear. Therefore, it
is not possible to select a database structure which is optimal
for the future transaction profile.

For the reason of having a flexible, sound structure, it is
decided to construct the database in accordance with the
relational model.

Normalization has not been done to its highest forms; especially
in a "large database"” environment a high normal form is not
favourable in case of a frequently occurring linkage of objects
during retrieval.

The SOIL table of the SOTER database has two (composite)
candidate keys which are considered acceptable, for by doing this
both the terrain component and the soil component have a direct
relation towards profile data.

A disadvantage is the introduction of some redundancy.

i)

FREFACE

m

The World Soils and Terrain Digital Database (SOTER) was first
mentioned to me in early 1987. In March 1988, contact was made
with the SOTER Project in order to make a contribution to it as
major part of a MSc. study in Computer Science at the
Agricultural University of Wageningen.

The Project was in its early phase and it was still vague how
computers were to be used for it. It was decided to design a
database structure for it, and an input application.

The first chapter of this report gives an introduction to the
SOTER Project. The second chapter describes the objectives of the
first phase of the SOTER project and the objectives of this study
(in short). Chapter 3 makes an analysis of the system
requirements, and the kind of data involved. Chapter 4 of this
report describes the data model and its implementation. The
Created ORACLE application forms are discussed in chapter 5.

Finally, I want to express my acknowledgements to Mr. P. Driessen
for throwing out a fish, to Mr. W. Peters for catching it, and to
Mr. C. Valenzuela of the I.T.C. (Enschede) .

Especially, I would like to thank Mr. J. den Dulk of the
Department of Computer Science for his help in initiating this
study and his guidance during it.

1. INTRODUCTION

Soils throughout the world differ much in their suitability for
agriculture or other kinds of land use. Accurate information
about the land is essential for a rational planning related to
the development, management and sustainable productivity of these
resources.

The increasing pressure on the land, the often indiscriminate
destruction of forests and woodlands, and the spectre of land
degradation results in decreased productivity with dire social
consequences. This provides a strong reason for improved mapping
and monitoring of world soils and terrain resources, and the
development of an information system capable of delivery of
accurate, useful, and timely information about resources to
decison-makers and planners.

In response to this, the urge was felt to create a World Soils
and Terrain Digital Database (SOTER) in order to provide in the
need for detailed and up-to-date information on land resources.
In August 1986, the SOTER project proposal for a world soils and
terrain digital database at a map scale of 1:1M, was endorsed.

As general requirements of the database were considered (SOTER
Project Proposal, 1986):

1. amenable to updating and purging of obsolete and/or
irrelevant data,

2. possibility of exchange of data with data bases of
other global environmental resources,

3. accessible to a broad array of international, regional
and national decision-makers to provide them with
interpretative maps and tabular information essential
for development, management, and conservation of
environmental resources,

4. transferable to developing countries for national
database development at larger scale.

The present study is a contribution to the SOTER project on the
issue of database design and construction of an application for
data entrvy.

i

RJECTIVES OF 3STUDY

The 1st phase of SOTER, which is to be completed on December 31st
1989, has as its objectives (:

1.

adoption of a universal legend, and definition of soils
and terrain parameters and specifications to be
included in the database,

development of a detailed set of specifications that
define the minimum set of capabilities required for the
database,

selection of three pilot areas in developing countries
for initial database construction. and acquisition and
correlation of all relevant maps and data,

construction of a prototype database, data entry, and
test of the reliability, accuracy and utility of this
database,

assessment of current geographic information systems
and development of recommendations on the optimal
system for the SOTER project.

At short terms, the objectives of SOTER are to collect and input
data from selected pilot areas and to use this data in testing
different existing geographic information systems.

The main objective of the present study is to develop an
appropriate database structure, and to implement some first
applications necessary for data entry.

The data can be distinguished in data that describe the location
and extent of objects, and data describing their characteristics.
This study is not concerned with the geo—graphical (spatial)
characteristics of objects, but merely with their soil and
terrain properties.

With the SOTER project being in its initial phase, i1t 1s unknown
at present what the future use of the database will be.
Especially during the first phase of the project the flexibility
of the system is an important requirement; the attributes to be
included may change due to experiences in the pilot areas, and
developing countries must be able to tailor the system in
accordance with their own requirements.

One of the requirements is that the system can be purchased at
limited costs. This makes a system that can work on a micro-
computer preferable (not considering the amount of data).

It was decided to use ORACLE as a Database Management System, for
reasons of being a relational DBMS, suitable for use on a micro
computer and compatible with UNEP's Global Resource Information
Database (GRID) in Geneva that uses ARC/INFO. Also, ORACLE can be
linked to the Integrated Land and Watershed Management
Information System (ILWIS), which is developed at the ITC
(Enschede) and a strong candidate to be selected as a GIS for the
SOTER project.

The SOTER Project distinguished three objects to include in the
SOTER Database (SOTER Report 88/2), polygon, terrain and soil.

For most attributes of these objects, it is proposed to specify,
when a value cannot be given, whether it is unknown or not
applicable in the context of that record/tuple. The report uses
the symbols '?' for 'unknown' and '#' for 'not applicable’.

For attributes of quantitative nature, it has been decided that
the lower values of class limits are stored. It should be
documented when this value is an 'expert estimate', in case of a
lack of data. It must be noted, that these values should not be
used for calculations, but merely as a code for the class that
applies to an attribute.

On the long term, especially when the system is to be transferred
to a larger scale, the qualification of 'measured/exact value'
will be desirable. On the short term, during the first phase of
the project, this problem does not occur; all values are class
values.

Therefore, it is proposed not to make any distinction at first
between the different nature of the attributes; both 'unknown'
and 'not applicable' may be stored as NULL values.

For the pilot areas, the input of data is the primary process. It
will be done manually at a micro computer; it is not known how
this will be in future phases with a much larger amount of data.
With much data being extracted from existing socil maps, most data
can be expected to be supplied on paper forms.

The total area of the pilot area in South-America amounts to
250,000 km=. With the requirement for a map polygon of 1 cm® at a
scale of 1:1M, the maximum number of polygons is 2500. Each
polygon (15 entries) has a maximum of 3 soils (66 entries) and 3
terrain components (24 entries), which may make the data entry
too much when done manually.

C

Required functions of the system are:

1. input, update and deletion of data at a micro computer
2. retrieval of data, e.g. in tabular form.
3. maintain data integrity

At present, the system is thought of as a single user system,
which excludes concurrency problems. In its final form, it is to
be expected that the database will be a multi-user system. The

present database has to be reviewed than on concurrency and
Security aspects.

Most of the attributes of the objects are related to one another.
Some combinations of attribute values can be considered highly
improbable.

In case that the soil layer file contains exact, measured values,

some functional dependencies appear, which are not there when the
values are in classes.

4. THE DATABASE MODEL

4.1 The data model

All data available to the users of an information system are
stored in the database. These data describe the objects that are
considered relevant.

A logical data structure can be represented by using the entity-
relationship approach (see figure 1.). In this approach an entity
is "a thing that can be distinctly identified"”, and a
relationship is "an association among entities"” (Date, 1986).

1:M
POLYGON TERRAIN

1:M 1:M

SOIL

M:1

PROFILE

1:M

LAYER

Figure 1. Entity-relationship diagram for entities of data model
for the SOTER database.

The logical data structure, as a model of the universe of
discourse, must have the following characteristics:

1. recognizable to users,
2. contain all relevant entities and their attributes,
3. implementable without redundancies.

General concepts in the SOTER Procedures Manual (1988) are
polygon, terrain component and soil. A polygon is defined as an
enclosed map delineation characterized by a certain regional
landform.

Each polygon may include a maximum of three terrain components
which are defined as segments of the polygon with comparable
topographic (e.g. local surface form) and/or soil patterns.

8

A

For each terrain component at least one soil is characterized,
with a maximum of three soils per polygon. The representation of
a soil in the database has a maximum of four layers within a
depth of 150 cm.

These limitations must be implemented in the applications on the
database; the database structure itself does not have them.

Soil data can be distinguished in 'external’' data, such as slope
position, that describe the location of the socil, and 'internal'
data that describe the profile (below surface). Profile data can
be representative for the whole profile, or for a layer only.

The SOTER Procedures Manual (1988) proposes both a maximum of
three terrain components and a maximum of three soils for each
polygon, to "encourage the map compilator to be very selective in
choosing those soils which are most important to the subsequent
interpretations on the database'. The possibility of having three
soils whose distribution over the polygon does not coincide with
the distribution of the terrain components, is not taken into
account.

The occurrence of nine (3 * 3) terrain/soil combinations within
one polygon can be realized in two ways:

1. by inclusion of the attributes soil_proportion,
slope_positon and profile_id in the terrain table for
each soil component (thus 3 times), or

2. by creation of a separate table that contains the
polygon_id, terrain_number, soil_number,
Ssoil_proportion, slope_position and profile_id.

Both solutions have their merits and demerits; the first solution
has the advantage that it eliminates the presence of a separate
soil table. However, in general the number of soil components
amounts to only one, which makes the attribute fields for the
other components redundant. The second approach has the
disadvantage of an extra table and henceforth will worsen queries
that concern both the attributes of the terrain component and of
the soil component. Because of its advantages of the increased
flexibility of the data structure towards future changes, and the
limitation of redundancy, the latter solution is preferred.

In the original concept of the manual, the user identifies a soil
(including the profile data) by the identification of the polygon
together with a soil component number. Thus, at the external
level (the one concerned with the way the data is viewed by
individual users), the unique profile identification is not
visible.

However, in the database it is necessary, for the profile data
cannot be (uniquely) identified by a soil component because many
soils can have the same profile (data). The soil component in the
database can be considered a relationship between terrain,
polygon and profile.

2cth the relations of polygon with terrain and polygon with 3cit
are one to many, with many ranging from 1 tc 3. The relation
between terrain and soil is has also become 1 to 3 because of the
soil table.

The soil-profile relation is many-to-one; several soils may refer
to the same profile, with a minimum of one soil.

4.2 Implementation of the data structure

The declarations of the database tables for the entities in the
diagram of figure 1, are presented in Annex A.

Important aspects of databases are integrity and security.
Integrity refers to the accuracy or validity of data, security
refers to the protection of data against unauthorized disclosure,
alteration of destruction.

Integrity

The integrity part of the relational model consists of the so-
called 'entity integrity' and 'referential integrity', concerning
primary keys and foreign keys respectively. Date (1986) defines a
foreign key as an attribute (or attribute combination) in one
relation whose values are required to match those of the primary
key of another relation.

To ensure entity integrity, for each table of the database, all
fields in the primary key are specified as NOT NULL, and a UNIQUE
index is created over the combination of all fields in the
primary key.

The SOIL table has two unique indexes; an index on POLYID, TERRID
and SOILID to ensure that every terrain—-component/soil-component
combination will be unique within a polygon, and an index on
PROFID, POLYID and SOILID to guard that each soil polygon within
a polygon has the same profile number (when occurring in more
than one terrain component).

It must be noted that this implies that the soil table could be
further normalized into the relations (polyid, terrid, soilid,
soilprop, slopepos) and (polyid, soilid, profid).

The indexes on the primary keys are created with the option
NOCOMPRESS. This option is particularly useful when a query
involves a small subset of a table's data (the indexed
attributes) and might be done entirely in the index, without
having to access the data block.

Constraints on the database can be considered at different,
increasing levels:

1. attribute constraints (the domain of an attribute)
2. tuple constraints (between attributes within one tuple)
3. table constraints (between tuples within one table)

10

. A'M i

4. database constraints (between tables within a databass)

Tuple and table constraints for each table, and the database
constraints are given in Annex B.

An example of a database constraint is the foreign key or subset
constraint. With an increasing level of the constraints, they are
more difficult to guard (Bots, 1985). The disadvantage of the
normalization of tables is the introduction of database
constraints.

Foreign keys in the database are:

TERRAIN.POLYID to POLYGON.POLYID

SOIL.POLYID+SOIL.TERRID to TERRAIN.POLYID+TERRAIN.TERRID
PROFILE.PROFID to SOIL.PROFID

LAYER.PROFID to PROFILE.PROFID

To enforce referential integrity, the authorization subsystem
(see Security) can be used to prohibit on-line operations that
may violate the constraints. The foreign key constraints must be
part of the requirements of application programs (see paragraph
5.1). It is advisable to have a utility program that can be run
periodically to check for and report on any constraint
violations.

This check can easily be done by asking selected queries on the
pseudo keys of the different tables.

Unfortunately, the implementation of constraints is only to a
limited extent supported by the DBMS. For example, attribute
constraints are slightly supported by defining attributes of a
certain datatype.

More complex constraints must be implemented in specific
applications. Note that when the databased is approached by other
means, these constraints may be violated.

Security
Security refers to the protection of data against unauthorized
disclosure, alteration or destruction. The ORACLE DBMS offers the
means to authorize users for different kinds of access to
specified tables or views.
The following operations on database tables may violate foreign
key constraints (Date, 1986):

1. DELETE on the referenced table,

2. UPDATE on the referenced table's primary key,

3. INSERT on the referencing table,

4. UPDATE on the referencing table's foreign key.

11

Lh
I

’

[

v
)
=
[

5.1 ORACLE Interactive Application Facility

The use of Oracle's Interactive Application Facility (IAF) is a
relatively easy way of generating screen forms for the
manipulation of data in tables.

IAF provides the possibility of defining SQL-triggers in order to
maintain the integrity of the data base. A trigger is an SQL-
statement that will be executed at a certain event. These
triggers can be defined at two levels: field level or block
level; field level triggers are executed when a screen field's
value is changed, block level triggers are executed when the
transaction

is committed to the database.

Attribute constraints can be implemented by specifying a datatype
and/or a range and/or a trigger for that attribute, in which the
validity of the entered value is checked.

In case of a trigger, the use of a subquery from a domain table
is preferred for this is faster than using OR-predicates or IN-
value lists (ORACLE Database Administrator's Guide, 1984). It is
evident that attribute constraints are checked at field level.

To maintain an acceptable speed of data input, the so-called
subset-requirements are not checked at field level (when field is
left), but at block level (when commit).

Because update of primary key fields is not allowed, what needs
to be triggered is:

DELETE on the referenced table, and
INSERT on the referencing table.

The subset requirement between soil.polyid and polygon.polyid is
not necessary to check, for this one must be valid if
soil.polyid+terrid is a subset of terrain.polyid+terrid
(transitive).

ORACLE provides eight types of block triggers:
PRE-QUERY PRE-INSERT PRE-UPDATE PRE-DELETE
POST-QUERY POST-INSERT POST-UPDATE POST-DELETE
The two query triggers are of no importance for integrity, bﬁt
they are useful at the profile and layer table for the retrieval
of a polygon number and a soil number to display instead of the
profile number that must remain invisible. The triggers that are

used in the IAP forms are listed in Annex C.

The insert on the referencing table can be checked by a statement
such as:

"select <(referenced_key> from <referenced_table>
where <referenced_key> = <{inserted_value>"

When this query is successful, the insert is permitted, if it
fails, the transaction will be rolled back.

12

o :

The delete on the referenced table is permitted when the
following query fails:

"select <referencing_key> from (referencing_table>
where <{referencing_key> = {value_to_be_deleted>".

The soil table presents the most constraints for maintaining
integrity. One of the reasons is that it is not fully normalized;
€.g. when a soil's profile changes, the profile number must be
changed at each occurrence of that soil (1 to 3 times).

The unique profile identification numbers are generated
sequentially by means of a table 'SEQNOS' that contains the
highest profile number.

When using the soil form, the user refers to a certain profile by
a polygon number and a soil component. When the given soil holds
the same profile as another socil, he also must enter the polygon
number and soil component of that previous soil.

The profile number is generated when the soil is inserted for the
first time, or when during update the user wants to assign a new
profile to it. In all other cases, the profile number is looked
up in the table. The following scheme shows the different
possible actions and the reactions to them.

PREVIOUS_REF——>LOOK_UP
~—FIRST_INSERT.

INSERT— NO_REFERENCE—— >GENERATE
L—NOT_FIRST >LOOK_UP
—NOTHING >NOTHING

UPDATE——NEW_PROFILE >GENERATE
L CHANGE_REF >LOOK_UP

The screens of the IAP-applications are shown in Annex D.

5.2 Creation and maintenance of domains

To create, update or drop domains, a utility has been written in
the C-language, interfacing with ORACLE by means of the Oracle
Call Interface (OCI, see Annex E). With the DOMAINS application
it is possible to create, update or drop domains with explanatory
texts that are of a length limited by the maximum size of the
ORACLE LONG datatype.

To keep track of the present domains, an additional table was
Created, in which the name of the domain (equal to the attribute
name), type, width (storage size), scale (decimals) and table
name ('parent table') are stored (see Annex A,

13

tables domains commit options help

1 | | |

list list commit connect general
describe| r—update rollback dos shell topics
|insert auto on clear screen edit help
create auto off exit
drop

next edit delete commit rollback quit

Figure 2. Command structure, option bars and boxes, of DOMAINS
application.

The DOMAINS application (see figure 2.) uses the TAB and COL
views of the system catalog to get a list of tables for the
present user, or for a description of a specific table.

A list of domains is kept in the above mentioned additional
DOMAINS table. To create a domain, the user must first select a
table, and then the desired attribute in the description of the
selected table. All domain tables are then created in the same
way; a CODE field of type 'DNAME' and size 'DWIDTH' (and DSCALE
decimals for numbers), with an attribute TXT of type LONG, and
one attribute TXTLEN of type NUMBER specifying the length of the
description contained in TXT. The newly created domain table is
added to the domains table.

'Update' is to be used when the present texts must be changed or
deleted. When the whole domain table is dropped. it is also
removed from domains.

It must be noted that whenever a domain is created, it is

necessary to adjust the IAF input file so that it uses the domain
table, and to generate a new application form.

14

a

NE AND RECOMMENDATIONS

It appears to be quite early to start the design of a database
when it is still unknown what the use of the database will be at
the time that it is operational.

Especially with large databases it is important for the
performance to optimize the data structure with regard to the
main transactions that are expected to be done on the database.

The database from this study was implemented with ORACLE version
4.1.4. The expected availability of ORACLE 5 will certainly
facilitate the implementation of triggers in the application
forms, because it offers the possibility of making tree
structured trigger steps, and of macros,

When it will be desired to label values as unknown, unapplicable,
class, estimate or measured, it is not recommended to use a
numeric code (e.g. '-1'), which may be a member of the
attribute's domain, for this purpose. The introduction of a
Separate label field in a table is to be preferred.

When the final system will be working in a multi-user
environment, it will be neccessary to revise the present
applications concerning concurrency and safety aspects, which is
of more importance then.

15

LITERATURE

Ammeraal, L., 1987. De programmeertaal C, 4e druk. Academic
Service, Den Haag.

Bots, J.M. and J.L. Simons, 1985. Bestuurlijke Informatie
Verzorging, Syllabus. Landbouwuniversiteit, Wageningen.

Date, C.J., 1986. An Introduction to Database Systems, Volume 1,
Fourth Edition. Addison Wesley Publishing Company.

Hofstede, G.J., 1986. Handboek Databases. Syllabus.
Landbouwuniversiteit, Wageningen.

ORACLE Programmer's Guide, 1984. Oracle Corporation, Menlo Park,
California.

ORACLE Database Administrator's Guide, 1984. Oracle Corporation,
Menlo Park, California.

Peters, W.L. (ed.), 1988. Proceedings of the First Regional
Workshop on a Global Soils and Terrain Digital Database and
Global Assessment of Soil Degradation. ISSS SOTER Report 3,
Wageningen.

Pro*C User's Guide.

Shields, J.A. and D.R. Coote, 1988. SOTER Procedures manual for
small scale map and data base compilation. ISSS SOTER Report
88/2, Wageningen.

SOTER Project Proposal, 1986. World Soils and Terrain Digital
Database. Wageningen.

SOTER, World Soils and Terrain Digital Data Base at a scale
1:1 M. Wageningen, The Netherlands, 1986.

16

S mmdb i - — TER databass tables
- TaATiTn ot i SaTaocase adlies,

=
[

Ul

LRI P T |

REM - 'soterdba’ = SOTER Database Administrator
REM ‘'soterdata' = insert/update/delete/retrieval
REM ‘'public' = retrieval

drop table seqnos;

create table seqgnos ¢
item_name char (30) not null,
max_1itemno number not null

)

insert into seqnos values ('PROFID’, 0);
grant select, update on seqnos to soterdata;
Create public synonym seqnos for seqgnos;

drop table dual;
create table dual (¢

dummy char (1)
)

insert into dual values ('*A'});
grant select on dual to public;
Create public synonym dual for dual:

drop table polygon;
Create table polygon (

polyid number (4) not null,
country char (4),
statprov number (2),
basemap char (4),
reportref number (4),
landform char (1),
relief number (4),
elevation number (4),
lithology char (4),
lakesurf number (3),
seasinund number (3),
riverdist number (3),
draindens char (1),
landuse char (4),
yearrec number (4)

)}
Create unique index polygonx on polygon (polyid) nocompress;

grant select on polygon to public;
grant insert, update, delete on polygon to soterdata;
Create public synonym polygon for polygon;

drop table terrain;
Create table terrain (¢

polyid number (4) not null,
terrid number (1) not null,
terrprop number (3),
parentmat char (2),

textgroup char (1),

17

surfform char (1),
slopgrad number (2),
slopleng number (3) ,
stoniness number (3,1),
rockiness char (3),
grwdepth char (5),
grwqual number (4) ,
rootdepth number (3),
vegetation char (2),
flooding char (3),
crusting char (3),
surfdrain char (4),
overwash number (3) .,
overblow number (3),
waterstat char (1),
windstat char (1).
complexmat char (1),
permafrost char (1),
icecontent char (1)

)
create unique index terrainx on terrain (polyid, terrid)
nocompress;

grant select on terrain to public;
grant insert, update, delete on terrain to soterdata:
create public synonym terrain for terrain;

drop table socil;
create table soil (

polyid number (4) not null,
terrid number (1) not null,
soilid number (1) not null,
soilprop number (3),
slopepos char (3),
profid number (5) not null
)
create unique index soilx_1 on soil (polyid. terrid, soilid)
nocompress;
create unique index soilx_2 on soil (profid, polyid, soilid)
nocompress) ;

grant select on soil to public;
grant insert, update, delete on soil to soterdata:
create public synonym soil for soil;

drop table profile;
create table profile (

profid number (5) not null,
intdrain char (4),
sysclass char (3).
soildev char (4),
refpedon char (6},

Y
create unique index profilex on profile (profid) nocompress;

grant select on profile to public;

18

Srant
creat

drop table layer;
Create table layer (

)

A Ay
oL w,

profid
layerid
lowerdepth
abruptness
moisthue
moistval
moistchr
dryhue
dryval
drychr
degrdecomp
biolact
claymin
contrast
diagnhor

“char

©. update. delete on profi
e public synonym profile for profile;

number (5)

i1 -
1l2 o

not null,

number (1) not null,

number (3),
char (2),
char (5),
number (1),
number (1),
char (5),
number (1),
number (1),
char (3),
(3y,
(4),
(1),
(4)

char
char
char

alter table layer add (

)

coarse number (2),
sand number (2),
very_fine number (2),
silt number (2),
clay number (2),
textclass char (4),
upwat_kpa number (2),
lowat_kpa number (4),
upwat_vol number (2),
lowat_vol number (2),
bulkdens number (3,2),
infiltrat number (4,1),
sathydcon number (4,1),
structure char (2),
stabaggr number (2)
alter table layer add (¢
orgcarbon number (3,1),
totnitro number (3,2),
cec_soil number (2),
cec_clay number (3,1),
cec_eff number (3,1),
aec_soil number (3, 2),
ca_exch number (4,2),
mg_exch number (3, 2),
na_exch number (3,2),
K_exch number (3, 2),
mn_exch number (3,2),
al_exch number (2,1),
ca_mg_rat number (2,1),
ca_k_rat number(2,1),
mg_Kk_rat number (2,1),
al_satperc number (3)

) ;

alter table layer add (

19

=

~ - < - .
cLeriacta;

p_avall char (1),

p_fixation char (4),
s_avail char (4),
trace_def char (4),
toxic_pot char (4),
base_sat number (3) ,
ph_hZ2Zo number (3.1),
ph_cacl?2 number(3,1),
elect_cond number (3),
esp number (2),
caco3 char (3),
gypsum number (2)

)
create unique index layerx on layer (profid, layerid) nocompress;

grant select on layer to public;
grant insert, update, delete on layer to soterdata;
create public synonym layer for layer;

drop table domains;
create table domains (

dname char (30) not null,
dtype char (6) not null,
dwidth number not null,
dscale " number,

tname char (30)

20

LT Y

P TR ek

n
r

T T - Rl R P o L N e
rupi&, table and databasz constraicmts.

I

TABLE POLYGON

Tuple Constraints

1. Permanent lake surface + Seasonally inundated <= 100%

2. Relations between attributes; e.g. landform and relief,
landform and lithology, landform and land use, distance
between rivers and drainage density.

Table Constraints

Primary Key

1. Polygon number

END TABLE FOLYGON

TABLE TERRAIN
Tuple Constraints

1. Overwash + overblow <= 100%
2. Relations between different attributes.

Table Constraints
1. Total of terrain components within one polygon <= 100%
Primary kKey

1. Polygon Number
2. Terrain Component Number

END TABLE TERRAIN

TABLE SOIL

Tuple Constraints

Table Constraints

1. Total of soil components within one terrain component
(= terrain component's proportion of polygon
2. The combination of polygon+soil component has one

profile number, no more, no less (candidate key) .
Primary Key

1. Polygon number
2. Terrain component number

21

z. So1i component number

Candidate Key

1. Profile number
2. Polygon number
3. Soil component number

EMD TARLE SOIL

TABLE FROFILE

Tuple Cornstraints

Table Censtraints

Primary kKey
1. Profile Number

END TABLE PROFILE

TABLE LAYER
Tuple Constraints

UpLimkpa < lolimkpa

Uplimvol > lolimvol

Sum of CaCOx and gypsum <100%.
pH-CaCl= < pH-H=0

D W e

Table Constraints

1. Layer number must increase with the lower depth of the
layers.

2. For layer number n > 1, layers 1 to n-1 must also be
stored.

Primary Key

1. Profile Number
2. Layer Number

END TABLE LAYER

22

CT

polygon
terrain
soil
profile
layer

Subset requirements

1. {terrain.polyid} {polygon.polyid}

2. {soil.polyid+soil.terrid}
{terrain.polyid+terrain.terrid}

3. {profile.profid} {soil.profid}

4. {layer.profid} {profile.profid}

Database constraints

1. Total area of soil components cannot exceed the area of
the terrain component in which they reside.

ENDDATABASE SOTER

23

SRty o
Fam FIR TR UL

T —= . - 3 - TAD .
L ZoOH QWYIggEeErys 1IN iAr FOrms.

ril

— A

The block triggers are given per table, together with a label 'F'

or 'S', indicating if the trigger has to Fail or Succeed for the
commit to proceed.

TABLE PROFILE

PRE-DELETE: the polygon may not be present in the terrain table

F select profid from terrain
where profid = &poly.profid

END PROFILE

TABLE TERRAIN

PRE-DELETE: terrain component may not be present in soil table

F select terrid from soil
where polyid = &terr.polyid and terrid = &terr.terrid

PRE-INSERT: polyid must occur in polygon table

S select polyid from polygon
where polyid = &terr.polyid

POST-INSERT: the total proportion of components must be <= 100%

S select * from dual

where 100 <= select nvl(sum(terrprop).0) from terrain
where polyid = &terr.polyid

PCST-UPDATE: idem.
S see POST-INSERT trigger

END TERRAIN

TABLE SOIL

The soil form uses the fields 'prevpoly' and 'prevsoil’', which
have no corresponding attribute in the scil table. These fields
must both be NULL or both be NOT NULL.

The triggers for INSERT and UPDATE operations are conform the
scheme given in paragraph 5.1.

POST-INSERT
POST-UPDATE

POST-DELETE: no delete if it was the only reference to a profile

S select profid from profile
where profid = &soil.profid

END SOIL

24

TABLE PROFILE
POST-QUERY: select a value for polyid and soilid into the form
S select polyid, soilid into prof.polyid, prof.socilid
from soil
where profid = &prof.profid
PRE-INSERT: get the appropriate profile number from soil
S select profid into prof.profid
from soil
where polyid = &prof.polyid and soilid = &prof.soilid
PRE-DELETE: the profile number may not be present in a layer

F select profid from layer
where profid = &prof.profid

END PROFILE

TABLE LAYER
POST-QUERY: idem.

S see POST-QUERY in PROFILE table
PRE-INSERT: profid must be present in profile table

S select profid from profile
where profid = &layer.profid

POST-INSERT: check increase of depth with increase of layerid
F select one.profid from layer one, layer two
where one.profid = two.profid
and one.layerid > two.layerid
and one.lowerdepth < two.lowerdepth
POST-UPDATE: idem.
F see POST-INSERT

END LAYER

25

ANNEX D.

IAP Screens

POLYGON FORM

Country code: - General lithology: R
State/Prov. code: JJj Perm. lake surface: i}
Base map ccde: - Seas. inund. land: i}
Report ref. code: - River distance: |}
Recording year: - Drainage density: l
Polygon number: - General land use: -
Reg. landform: J}
. General relief: -
Elevation:
F2=Query : F4=List ! F6=ClrFld . F8=Keys ! FiO0=Help ! End=Commit ! ~Z=Exit
TERRAIN FORM
Polygon Number: - Rockiness: - Overwash: i}
Terrain Number: [Groundw. depth: - Overblow: I
Proportion: - Grw. quality: - Water erosion: l
Parent material: [Jjj Rooting depth: - Wind erosion: |
Texture group: . Vegetation type: - Complexity: [}
Surface form: l) Surface flooding: - Permafrost: .
Slope gradient: - Surface crusting: - Ice content: |
Slope length: - Surface drainage: -
Stoniness: --
F2=Query : F4=List | F6=ClrFld ! F8=Keys @ F10=Help ! End=Commit ! ~Z=Exit

26

SOIL FORM

Polygon number:
Terrain component:
Soil component:
Proportion:

Slope position:

F2=Query | F4=List ! F6=ClrFild ! F8=Keys ! Fl0=Help ! End=Commit | “Z=Exit
PROFILE FORM
Polygon number: -
Soil number: l
Internal drainage: - H
Classification system: -
Soil development: -
Reference pedon: -
F2=Query ! F4=List | F6=ClrFld | F8=Keys | F10=Help @ End=Commit | -Z=Exit

27

Polygon: Jll Soil: B

Layer: J}

Lower depth:

Abruptness:

Moist colour

Dry colour

Decomposition:

Biol.

Clay mineralogy:

Contrasting layer:

activity:

|

i

- 1 Vi
- Ve
L

|

||

|

LAYER FORM 1

Diagn. horizon: [}
% coarse: Jj
% sand: JJj
% very fine: .
% silt: -
% clay: -
Text. class: I}
UpWatLim. (kPa): J}
LowWatLim. (kPa): R

F2=Query | F4=List | F6=CirFld : F8=Keys : FlO=Help ! End=Commit ! “Z=Exit
- LAYER FORM 2

Polygon: - Soil: . Layer: }} Tot. nitrogen: -
UpWatLim. (vol%) : - CEC soil: -
LoWatLim. (vol%): JJj} CEC clay: -
Bulk density: R CEC eff.: -
Infiltration: N AEC soil:
Sat. conductivity: - Ca exch.: _
Structure: JJj Mg exch.: -
Stab. aggregates: - Na exch.: -
Org. carbon: - K exch.: -

F2=Query | F4=List .

F6=ClrFld ! F8=Keys |

Fl10=Help : End=Commit !

~Z=Exit

28

LAYER FORM 3

Polygon: - Soil: J Layer: I
' S available:
Mn exch.: e Trace def.:
Al exch.: - Toxic pot.:
Ca/Mg: - Base saturation:
Ca’K: IR pH H20/CaCl2:
Mg/K: B Electrical cond.:
Al saturation: B ESP:
P available: . CaCo03:
P fixation: - Gypsum:
F2=Query | F4=List | F6=ClrFld ! F8=Keys ! F10=Help ! End=Commit

"Z=Exit

29

m
-
M
3l
"
I
2
fth
[
i
y—
"
=
)
n
“ti
11
n
m

) /*i*

“oradef.h - definitions for ORACLE interface routines.
*

* Copyright (c)

*

1988, J.H.M. Pulles.

“Purpose: -

* Defines the struct of an ORACLE cursor data area which is

x used by ORACLE interface functions; values for ORACLE

* constants and masks:; provides function prototypes for ORACLE
* Interface calls.

*

*

*****i\lir\k*****************i{*************I{*t*\k**k**kk***********/

#ifndef NO_EXT_KEYS
#define _CDECL
#define _NEAR

#else /* extensions
#define _CDECL
#define _NEAR

#endif /* NO_EXT_KEYS %/

/* extensions enabled
cdecl
near
not enabled

*/

*/

/* definition of ORACLE cursor data area */

struct oracle_area
!
1
int ret_code;
int func_type;
long row_count;
int parserr_offset;
char func_code;
char fill_char;
int cursor_nr;

/*
/*
/*
/*
/*

/*

return code for operation */
function type of SQL command */
number of rows processed */
offset of parse error */

code for requested OCI call */

QRACLE internal cursor number */

int v4_err; /* error message number */

char flagl; /* lst warning flag */

char flag2; /* 2nd warning flag */

char int_rowid(13]; /* row ID in internal format */
char osd_err(41];

char chk_byte;

char ora_parm(28]; /* used internally by ORACLE */

/* Masks for warnings of flagl */

#define IS5_WARNING 0x01
#define TRUNC_ON_FETCH 0x02 /* data truncated on fetch */
#define NULL_VALUES 0x04
#define NO_WHERE_CLAUSE 0x10 /* at UPDATE or DELETE op. */
#define ROLLBACK_PERF 0x40
#define INCONSISTENT 0X80

/* Masks for warnings of flag2 */

#define
#define

ORES_POSSIBLE
FATAL_ERROR

0x01
0x02

30

#define
#define

/* code

#define
#define
#define
#define
#define
#define
#define
#define
#define

ROW_LEVEL_ROLLB

NO_AUDIT

VAR_STRING

INT_NUMERIC

INT

NULL_STRING

RAW_DATA
LONG
UNKNOWN

INT_ROWID

INT_DATE

0
0

values for data types *

%04
x08

/* values for constants used in SQL.ORA */

#define
#define

M_IDEN

S_DTFL

3
6

0

/* 'Oracle Call Interface' function prototypes */

int

int

int

int

int

int

int _CDECL olon (struct oracle_area *, char *, int, char *, int,
int);
int _CDECL oopen (struct oracle_area *, struct oracle_area *,
int, int, int, char *, int);
—CDECL o0sql3 (struct oracle_area *, char *, int);
int _CDECL odsc (struct oracle_area *, int, int *, int *, int x,
int *, char *, int *, int *);
_CDECL oname (struct oracle_area *, int, int, int, char *,
int *);
_CDECL odefin (struct oracle_area *, int, char *, int, int,
int, int *, int, int, int, int *, int *);
_CDECL obndrv (struct oracle_area *, char *, int, char *,
int, int, int, int *, int, int, int);
int _CDECL obndrn (struct oracle_area *, int, int, int, int,
int *, int, int, int);
_CDECL oexec (struct oracle_area *);
_CDECL ofetch (struct oracle_area *);
_CDECL ocmn (struct oracle_area *, char *, int);

int

int

int

_CDECL

_CDECL

31

ocof (struct oracle_area *);

ocom (struct oracle_area *);

int,

int

int

int

int

int

int

scon (struct osracle_area “i:

orol (struct oracle_area *);

oermsg (int, char *);

oclose (struct oracle_area *);

ologof (struct oracle_area *);

oopt (struct oracle_area *, int, int);

ores (struct oracle_area *);

32

vl 1 Il i [T T | |

