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The text below reports the outcome of Task T3.1.d (Uncertainty estimation of GHG reporting) and is a 
contribution to Chapter X of Deliverable D3.2 (Soil sampling design, monitoring & measurement 
protocols), specifically on the topic “guideline for error calculations of GHG reporting”. The task 
description copied from the project plan is: 
 
T3.1.d: Uncertainty estimation of GHG reporting (ISRIC, TI) 

Datasets are often contaminated by various error sources, such as measurement, analytical, sampling, 
classification, interpolation, and/or positional error. Errors may also be cross-correlated and 
correlated in space and time. Errors propagate in subsequent processing steps and through models to 
GHG exchange estimates. We will list major error sources for all soil properties used as input in models 
for GHG exchange estimates and review statistical methods for quantification and propagation of error 
and uncertainty. For this we will mainly rely on IPCC guidelines and common uncertainty analysis 
methodologies and also consult national reporting to the IPCC and UNFCCC. 
 
 
Author: G.B.M. Heuvelink (ISRIC) 
  
X Uncertainties in GHG reporting   

Reports of greenhouse gas (GHG) emissions released into the atmosphere rely on both GHG 
measurements and models. However, neither measurements nor models are without imperfections, 
implying that the reported GHG emissions are mere approximations of the actual emissions and are not 
error-free. It is of great importance to quantify the errors in the estimation process as this determines the 
fitness for use of the estimates. In instances where estimation errors are substantial, the estimates should 
be used with caution by policy and decision makers, as well as other end-users. It may be beneficial to 
reduce estimation errors, and knowing the extent to which each error source contributes to GHG 
emission estimation error can be very useful in achieving this objective. 
 
This chapter reviews the major sources of uncertainty of GHG emission models, describes how errors 
and uncertainties can be characterized statistically (i.e., by probability distributions), and explains how 
the propagation of uncertainty through GHG emission models can be analysed. Specific attention is paid 
to how error and uncertainty depend on the spatial and temporal extent over which GHG estimates are 
made and how uncertainty assessment is addressed in protocols used by IPCC and UNFCCC. 
Throughout this chapter, the focus is on uncertainty in soil properties and how these propagate through 
GHG models. 
 
X.1 Sources of uncertainty 

Suppose we use a model 𝑓𝑓 to estimate the GHG emission 𝑦𝑦 from model inputs 𝑥𝑥𝑖𝑖 (𝑖𝑖 = 1, . . . ,𝑛𝑛) and 
model parameters 𝜃𝜃𝑗𝑗, 𝑗𝑗 =, . . . ,𝑚𝑚: 
 
 𝑦𝑦� = 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛,𝜃𝜃1, …𝜃𝜃𝑚𝑚) (1) 
 
The estimate 𝑦𝑦� will differ from the true GHG emission 𝑦𝑦 for three reasons: 

1. Errors in model inputs. Model input errors will propagate to the model output. For example, 
GHG emission depends on soil organic carbon and soil moisture, but these soil properties are 
rarely known exactly and often derived from soil maps. All maps have errors, and these soil 
map errors will propagate to the estimated GHG emission. 

2. Errors in model parameters. Many models have parameters that are calibrated using inverse 
modelling approaches, but since calibration data sets are finite and have measurement errors, 



the estimated parameters have errors too. These errors will also propagate to the GHG emission 
estimates.  

3. Errors in model structure. Even if the inputs and parameters of a model were known without 
error, there would still be a GHG emission estimation error because the model structure is only 
a simplified representation of the ‘true‘ physical, chemical and biological processes (Heuvelink, 
1998a). During modelling, many sub-processes may have purposely been ignored or represented 
in a simplified way. Reality is too complex to be modelled exactly and hence models are 
simplified representations of reality. 

 
In this section we take a closer look at all three error sources. But before we do that we present a 
statistical model of error and uncertainty. 
 
X.1.1 Statistical model of error and uncertainty 

Suppose that the organic carbon content of the soil at some location equals 25.8 g kg-1. Suppose further 
that this value is unknown to us because we did not take a soil sample at the location and analyse it in 
the laboratory. All that we have is a map that states that the soil organic carbon at the location equals 
31.2 g kg-1. Clearly, the soil map is in error, and the error equals 25.8 – 31.2 = − 5.4 g kg-1. Here, error 
is defined as the difference between the true and estimated value of the soil property. 
 
In practice, we often do not know the error, because we need the true value to calculate it and we do not 
have the resources to perfectly measure the soil everywhere at all times. In other words, we are often 
uncertain about the error and the true value. Although we do not know the error and are uncertain, this 
does not mean that we are completely ignorant. For instance, we might know that the chances are equal 
that the map error is positive or negative (because we used an unbiased mapping method), we might 
know that it is very unlikely that the absolute value of the error is greater than 1.50 g kg-1, etc. Thus, it 
is not unreasonable to assume that we can define a probability distribution of the error. This distribution 
lists all possible values of the error, and attaches a probability or probability density to each of them 
(Figure X.1). 
 
The most common probability distribution is the normal distribution, which has two parameters: a mean 
and a standard deviation. The mean represents the systematic error, whereas the standard deviation is a 
measure of the random error. To give an example where measurement error is the cause of uncertainty, 
suppose the pH of a soil sample is measured repeatedly in a laboratory, and let the set of measured 
values have a mean of 7.24 and standard deviation 0.46. Let it also be known that the ‘true’ pH is 7.41 
(note that in practice the true value may be difficult to get, but a reference value established in a certified 
laboratory could be asserted as such), then we may characterize the measurement error by a normal 
distribution with mean of 0.17 and a standard deviation of 0.46. Note that the square of the standard 
deviation is known as the variance. 

 
Errors in variables that vary in space and time may be correlated in space and time. Also, errors in one 
variable may be correlated with those in another variable. For instance, if clay is defined as 1–sand–silt 
then measurement errors in sand and silt will be correlated with the estimation error of clay. It is beyond 
the scope of this chapter to provide detailed statistical models for all these extensions, instead we refer 
to Heuvelink et al. (2007). 



 
Figure X.1. Examples of probability density functions to characterise uncertainty. Density functions 
can be narrow (small uncertainty, top) or wide (large uncertainty, bottom). They can also be symmetric 
around zero (left) or asymmetric and biased (right). From Heuvelink (2014). 
 
X.1.1 Input uncertainty 

To quantify uncertainty in inputs to GHG models we first need to consider how each input was derived. 
If it was derived by a direct measurement in the field or laboratory then the only source of uncertainty 
is measurement error, which can be quantified by repeated measurements (e.g. van Leeuwen et al., 2021) 
or through specifications of instrument precision by the manufacturer. Note that this only assesses the 
random component of the measurement error, not the systematic error. Errors of field measurements 
that are obtained by expert judgement may be more difficult to assess, but one approach is to let experts 
quantify their uncertainty (O’ Hagan et al., 2006) or have multiple experts independently estimate the 
soil property of interest (van Leeuwen et al., 2018).  
 
In many cases models are run with inputs that are not directly measured but supplied by maps. This 
introduces another source of uncertainty. If maps were made using geostatistical interpolation then map 
interpolation errors are quantified by the kriging standard deviation (Webster and Oliver, 2007). This 
works for any kriging variant, be it ordinary kriging, regression kriging or lognormal kriging (note that 
in the latter case the map errors will be lognormally distributed, which might be more realistic than a 
normal distribution for skewed inputs such as soil organic carbon and precipitation). If maps were made 
using machine learning it is more difficult to obtain the map errors, but one technique that accomplishes 
this and is frequently used in digital soil mapping is known as quantile regression forests (Meinshausen, 
2006). Usually one derives the 0.05 and 0.95 quantiles to obtain the lower and upper limits of a 90% 
prediction interval, but in principle all quantiles can be derived, which together define the prediction 
error probability distribution. Examples of quantifying soil map uncertainty in this way are Vaysse and 
Lagacherie (2017), Szatmári and Pásztor (2019) and Poggio et al. (2021). Some studies also use a 
bootstrapping approach to quantify uncertainty in machine learning maps, but this only captures part of 
the total uncertainty (i.e., a confidence interval instead of a prediction interval) and should not be used 
to quantify map uncertainty (Wadoux, 2019). 
 



X.1.2 Parameter uncertainty 

Model parameters differ from model inputs in a sense that they only have meaning in the context of a 
model. A typical example is a regression coefficient. We may fit a multiple linear regression model that 
predicts GHG emission from soil temperature (T) and moisture (M) as: 
 
 𝐺𝐺𝐺𝐺𝐺𝐺 = 𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑇𝑇 + 𝛽𝛽2 ∙ 𝑀𝑀 (2) 
 
Here, T and M are inputs that also exist outside the model and can be measured. But the regression 
coefficients 𝛽𝛽𝑖𝑖 are no physical entities and cannot be measured directly. They can only be estimated 
using a calibration or inverse modelling approach, which requires paired observations of model inputs 
and outputs. Many calibration approaches only provide estimates of the model parameters, but our 
interest is also in the uncertainty of these parameter estimates. 
 
In case of a simple model such as Eq. 2 we can derive the (multivariate) probability distribution of the 
regression coefficients using analytical methods. Thus, estimates of the regression coefficients, 
variances of associated estimation errors and their correlation coefficients can be easily derived using 
standard statistical software packages. For an example see Section 14.4.5 in Heuvelink (2018). 
 
Most GHG emission models are much more complicated than a linear regression model, and in such 
case it is practically impossible to derive the probability distribution of model parameters in an analytical 
way. In such case one has to turn to numerical methods, and the most powerful and statistically rigorous 
method for that is Bayesian calibration (Kennedy and O' Hagan, 2001; van Oijen et al., 2005).  The idea 
of this method is to start by defining a prior distribution for all uncertain parameters. This distribution 
must reflect the prior knowledge of the modeller. For instance, a modeller may know that a parameter 
cannot be negative or bigger than some threshold. If the modeller has little to no prior knowledge, the 
prior distribution may be chosen extremely wide, yielding an uninformative or so-called ‘flat’ prior. 
Next, the calibration data are used to update the prior distribution to a posterior distribution. This 
requires multiplication of the prior by the likelihood, which expresses how ‘likely’ the data (i.e., the 
observed model outputs in the calibration set) are, given the parameters. The key equation is: 
 
 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝(𝜃𝜃|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) ∝ 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝(𝜃𝜃) ∙ 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜃𝜃)  (3) 
 
The likelihood 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜃𝜃) involves use of the GHG emission model, because that defines how model 
parameters influence the model output. Note that the likelihood is a distribution and must therefore 
include a stochastic element, which either derives from measurement errors in the data (i.e., 
measurements of GHG emission used for model calibration) or from incorporation of model structural 
uncertainty (see Section X.1.3 below). Note also that Eq. 3 has a proportionality sign. This obstructs 
analytical solutions and has led to the development of Markov chain Monte Carlo simulation (Gelman 
et al., 2013), which solves Eq. 3 using numerical sequential simulation. This method is computationally 
intensive, which in turn has led to faster approximate solutions, such as the Integrated Nested Laplace 
Approximation approach (INLA, Lindgren and Rue; 2015).  
 
Bayesian calibration is complicated and requires specific skills but it is also very powerful because it 
yields the complete multivariate distribution of all model parameters that are treated as uncertain. Thus, 
it also incorporates correlations between parameter estimation errors, which is of key importance to get 
a realistic assessment of parameter uncertainty. Examples of Bayesian calibration in GHG emission 
modelling are Lehuger et al. (2009), Hashimoto et al. (2011), Lehuger et al. (2011) and Rahn et al. 
(2011). 
 



X.1.3 Model structure uncertainty 

Model structural uncertainty is difficult to quantify. The easiest and most common way is to add a 
stochastic term to the model that supposedly captures all model structural uncertainty. For instance, in 
the example of the multiple linear regression given in Eq. 2, we would rewrite this as: 
 
 𝐺𝐺𝐺𝐺𝐺𝐺 = 𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑇𝑇 + 𝛽𝛽2 ∙ 𝑀𝑀 + 𝜀𝜀 (3) 
 
where 𝜀𝜀 is typically assumed to be an independent and identically distributed normal random variable 
with zero mean and constant variance 𝜎𝜎2. This basically means that estimation of the model structural 
uncertainty is reduced to estimation of a single parameter, i.e. the variance variance 𝜎𝜎2. Extension to 
dynamic models is done in time series analysis, such as through Auto-Regressive Moving Average 
(ARMA) models, where model structural error is also additive but where temporal autocorrelation of 
these errors is incorporated (Sutthichaimethee and Kubaha, 2018; Zhao et al., 2018; Sun et al., 2019). A 
similar approach is used in state-space modelling, which in addition to a stochastic state equation also 
defines a stochastic measurement equation, thus enabling conditioning the state variables to 
measurements through Kalman filtering, smoothing and forecasting (i.e., data assimilation). For 
examples applying this method to GHG emission see Innes et al. (2015), Henne et al. (2016) and Ding 
et al. (2017). Incorporating spatial instead of temporal correlation in model structural uncertainty can be 
done using geostatistical approaches, by defining and quantifying a variogram (Webster and Oliver, 
2007). 
 
One other method to characterize model structural uncertainty is through the use of an ensemble of 
models (Refsgaard et al., 2007; Wagena et al., 2019, Liao et al. 2021). Here, the idea is that the set of 
models represent a sample from the population of all possible models, so that model uncertainty is 
quantified by the differences between these models and their outputs. The problem with this approach 
is that the set of models may not capture the entire population well (because modellers tend to learn and 
copy from each other and build similar models) and that it is cumbersome because multiple models must 
be developed and applied. 
 
Finally, it is important to note that quantifying model parameter and model structural uncertainty cannot 
be done separately and should ideally be done while also accounting for input uncertainty and 
uncertainty in measurements of model outputs used for model calibration (Quetin et al., 2020; Wadoux 
et al., 2020). This is because discrepancies between model outputs and independent measurements are 
the result of uncertainty in model inputs, model parameters, model structure and measurement errors in 
the independent data and cannot be attributed to just one or a few of these uncertainty sources. 
 
X.2 Uncertainty propagation 

Once all three sources of uncertainty as discussed in Section X.1 are quantified (i.e. characterized by 
probability distributions) it is relatively easy to analyse the propagation of these uncertainties to the 
model output. Two main methods are often being used for this. The first is the Taylor series 
approximation method, the second the Monte Carlo simulation method. 
 
X.2.1 Taylor series method 

The Taylor series method, also known as first-order analysis, approximates the model 𝑓𝑓 defined in Eq. 1 
by a truncated Taylor series around the means of the uncertain inputs and parameters (Heuvelink, 
1998b). In case of the first-order approximation, this boils down to a linear model that is fairly close to 
the true model near the centre of the probability distributions of the uncertain sources and that 
deteriorates further away from it. Linearizing the model greatly simplifies the uncertainty propagation 
analysis. It turns out that the variance of the model output can be derived analytically (Taylor, 198; 
Heuvelink, 1998b): 
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Here, 𝑚𝑚 is the number of uncertain inputs, 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
 is the partial derivatives of 𝑓𝑓 with respect to the i-th input, 

which is evaluated at the means of the uncertain inputs. Note that for simplicity Eq. 4 ignores uncertainty 
in model parameters, but that these can be treated in a similar way by extending the summation over the 
𝜃𝜃i. Similarly, if model structure uncertainty is represented by an additive stochastic term (see 
Section X.1.3) then the variance of that term should simply be added to Eq. 4. 
 
Figure X.2 shows a graphical illustration of the Taylor series method in a case where there is a single 
input (i.e., 𝑚𝑚 = 1). This figure nicely shows that the output uncertainty not only depends on the 
magnitude of the input uncertainty, but also on the sensitivity of the model to small changes in the input 
(i.e., the partial derivatives in Eq. 4). 
 
Eq. 4 shows that the uncertainty of the model output depends on the uncertainty of the inputs, but also 
on the sensitivity of the model output to changes in the model inputs, as expressed by the partial 
derivatives. If the input uncertainties are uncorrelated the covariance terms are zero and the output 
variance becomes a sum of terms, each of which represents the contribution of one of the uncertain 
inputs. This is valuable information because it shows which are the main sources of uncertainty (the 
weakest links in the chain) and can inform modellers where to focus attention to reduce uncertainty. 
 
Some examples of application of the Taylor series method for uncertainty propagation in environmental 
modelling are Ferante et al. (1999), Grüneberg et al. 2014, Hoffmann et al. (2014), and Magnussen et 
al. (2014). 
 
An important disadvantage of the Taylor series method is that it involves an approximation error that 
can be large. Perhaps an even bigger problem is that it requires that the model is mathematically 
differentiable with respect to all its inputs and moreover that these mathematical derivatives are known. 
This makes it difficult to apply this method to complex dynamic models such as process-based  GHG 
emission models. For such models, the Monte Carlo method is a more viable alternative. 
 

 
Figure X.2. Graphical illustration of uncertainty propagation and the first order Taylor series method in 
a case of a single uncertain input. The red line represents the model, the green lines are local linear 



approximations of it. In blue a case where the input uncertainty is not very large but the output 
uncertainty is, because the model is quite sensitive to small changes in the input. In purple the opposite, 
large input uncertainty but small output uncertainty. 
 
X.2.2 Monte Carlo method 

The Monte Carlo method uses an entirely different approach to analyse the propagation of uncertainty. 
The idea of this method is to compute the model output repeatedly, with input and parameter values that 
are randomly sampled from their joint probability distribution. The model outputs form a random sample 
from the probability distribution of the model output, so that parameters of that distribution, such as the 
mean and variance, can be estimated from the sample. For uncertainty propagation, it is the variance 
that is of most interest. 
 
The method thus consists of the following steps: 

1. Repeat 𝑁𝑁 times: 
a. Generate a set of realisations of the inputs 𝑥𝑥i (𝑖𝑖 = 1. . .𝑛𝑛) and parameters 𝜃𝜃j (𝑗𝑗 =

1. . .𝑚𝑚).   
b. For this set of realisations, compute and store the model output 𝑦𝑦 =

𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛,𝜃𝜃1, …𝜃𝜃𝑚𝑚) 
2. Compute and store sample statistics from the 𝑁𝑁 outputs. 

 
Here, 𝑁𝑁 is the number of Monte Carlo runs, i.e. the Monte Carlo sample size. Next to the variance one 
can also derive the 0.05 and 0.95 quantiles of the distribution, to obtain a 90% prediction interval of the 
model output. A histogram or boxplot of the 𝑁𝑁 model outputs also nicely portrays the uncertainty. 
Realisations of the inputs and parameters are obtained using an appropriate pseudo-random number 
generator. Note that the inputs and parameters should cannot be simulated independently if they are 
correlated. They must be simulated simultaneously. This also holds for inputs that are temporally and 
spatially correlated, in which case temporal and spatial stochastic simulation techniques can be used, 
such as sequential Gaussian simulation (Webster and Oliver 2007, Chapter 12).  
 
Like the Taylor series method, the Monte Carlo method also involves an approximation error. However, 
this approximation error can be made smaller by increasing the Monte Carlo sample size (Figure X.3). 
Although it is case-dependent, in practical applications we often find that at least 100 Monte Carlo runs 
are required to get reasonable results but that as many as 1,000 or more are needed to get stable results.  
 
The Monte Carlo method works for any model because it only perturbs the model inputs and parameters 
and leaves the model intact. Another advantage over the Taylor series method is that it provides the 
entire probability distribution of the model output, not just its variance. These advantages make it the 
preferred uncertainty propagation method, with numerous applications in the environmental sciences, 
also for GHG emission modelling (e.g. Nol et al., 2010; Kros et al., 2012; Molto et al., 2013; Stahl et al., 
2014; Wojcik-Gront and Gront, 2014; Spafford and MacDougall, 2020; Yanai et al., 2020; Fortin, 2021). 
An important disadvantage is that it is computationally demanding, because it requires that a model is 
run many times (but note that the computations can very easily be parallelized). 
 
Uncertainty contributions can also be analysed with the Monte Carlo method. One obvious way of doing 
that is to repeat the Monte Carlo analysis with one of the inputs or parameters fixed on its deterministic 
value, and evaluating how much the output variance has decreased by this. More advanced approaches 
of stochastic sensitivity analysis have also been developed, see Saltelli et al. (2004) for details. 
 



 
Figure X.3. Scatter plots of standard deviations of N2O emission (kg N2O-N ha-1 yr-1) over the number 
of Monte Carlo runs for two Monte Carlo uncertainty propagation analyses, each using a different seed 
of the random number generator. Left: 100 runs, middle: 250 runs, right: 500 runs. Each diamond 
represents a grid cell in the study area. The diamonds get closer to the 1:1 line as the number of Monte 
Carlo runs increases, indicating that both analyses produce a similar standard deviation. Figure and data 
from Nol et al. (2010). 
 
X.3 Upscaling uncertainties 

Most GHG emission models are dynamic and hence predict emissions over time. Model outputs can 
also be spatialized by running the model at all locations (usually the nodes of a fine grid) in the area of 
interest. All this means that the GHG emission estimates are distributed in space and time. Often, users 
are not interested in the GHG emission at points but in the average or total emission for an area (e.g., a 
field, region, entire country or the globe) and/or time period (e.g., a day, month, year or decade). 
Upscaling GHG estimates is easy, but how about the associated uncertainties? It turns out that this is 
much more difficult and cannot be done without accounting for spatial and temporal correlations of the 
GHG emission estimation errors. Moreover, this problem seems largely ignored by the scientific 
community. 
 
First, note that spatial and temporal aggregation leads to a decrease of uncertainty. This is because errors 
partly cancel out. The uncertainty decrease is largest if errors are uncorrelated. Theoretically, if GHG 
emission estimation errors at the points in the area of interest have zero mean (i.e., have only a random 
error component and no systematic error) and are uncorrelated then the uncertainty decreases to zero. 
All errors will cancel out. Mathematically, this follows from: 
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where the 𝜀𝜀𝑖𝑖 are the GHG estimation errors at points and 𝑛𝑛 is the total number of points in space and/or 
time over which the average is taken. In case errors are uncorrelated, the covariance terms are zero so 
that the second term on the right-hand side of Eq. 5 is zero, while the first term approaches zero as 𝑛𝑛 
becomes large. Eq. 5 also shows that the uncertainty of the average crucially depends on the covariances 
of the estimation errors. This is often ignored or grossly simplified in natural resource inventories, see 
for instance Lugato et al. (2014), Harris et al. (2021) and Plaza et al. (2018). 
 
Time series models and geostatistics can quantify the spatio-temporal correlations of input errors. If 
Monte Carlo uncertainty propagation accounts for these correlations then the uncertainty of spatio-
temporal averages and totals can be properly addressed. Szatmári et al. (2021) used such approach to 
derive the uncertainty of the soil organic carbon stock change over time for Hungary at multiple spatial 
scales. The study confirmed that uncertainty decreases as the area over which is aggregated increases. 
At point scale none of the estimated soil organic carbon changes between 1992 and 2010 was statistically 
significant, while at the county and country scale they were. 



 
X.4 Uncertainty reporting in IPCC and UNFCCC guidelines 

There are many reports and websites that describe and explain how the IPCC and UNFCCC deal with 
uncertainties in greenhouse gas emission inventories. In this section we limit ourselves to a review of 
IPCC documents from the ‘2006 IPCC Guidelines for National Greenhouse Gas Inventories’1 and the 
‘2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories’2. Note that 
the UNFCCC adopts the IPCC guidelines3. Examples of implementations and applications of these 
methods as published in the peer-reviewed international scientific literature are Monni et al. (2004), 
Pichancourt et al. (2018), Calvo et al. (2019), Jonas et al. (2019), Yanai et al. (2020), and Fortin (2021). 
 
X.4.1 IPCC chapters ‘Uncertainties’ 

Chapter 3 of Volume 1 of Eggleston et al. (2006) is exclusively devoted to uncertainty assessment of 
GHG emission inventories. It starts with definitions and among others explains the difference between 
accuracy and precision. Accuracy is associated with unbiasedness (i.e., a lack of systematic error) and 
precision with the degree of random error. Uncertainty is defined as “the lack of knowledge of the true 
value of a variable that can be described as a probability density function”. Thus, in their terminology, 
estimates and predictions must be both accurate and precise to have low uncertainty. Uncertainty is 
quantified by the limits of a 95% confidence or prediction interval. This agrees with the statistical 
description of uncertainty presented in Section X.1. 
 
Note that the IPCC definition of accuracy is opposed to a more conventional definition of accuracy in 
for example dictionaries, as “the degree to which the results of a measurement, calculation, or 
specification conforms to the correct value or a standard”. Under this definition, accuracy includes both 
systematic and random error. 
 
The report continues with considering eight broad causes of uncertainty and discusses how each of these 
could be reduced: 

3. Lack of completeness; 
4. Model (models are a simplification of real systems); 
5. Lack of data; 
6. Lack of representativeness of data; 
7. Statistical random sampling error; 
8. Measurement error; 
9. Misreporting or misclassification; 
10. Missing data. 

 
The chapter also describes how quantification of the eight causes of uncertainty above can be achieved 
using empirical data, expert judgement and from published references, and proposes which types of 
probability distributions can be used. It does not consider the spatial extensions of these distributions. 
Thus, it ignores quantification of spatial correlations, although it recognises “scale mismatches” and that 
“uncertainty will tend to increase as the geographic scope decreases”. This confirms that uncertainty 
strongly depends on the spatial and/or temporal support of the estimates and predictions (Section X.3). 
Temporal autocorrelation of uncertainties is specifically addressed by referring to the use of time series 
models. 
 

 
1 https://www.ipcc-nggip.iges.or.jp/public/2006gl/ 
2 https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html 
3 https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/good-
practice-guidance-and-uncertainty 

https://www.ipcc-nggip.iges.or.jp/public/2006gl/
https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html
https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/good-practice-guidance-and-uncertainty
https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/good-practice-guidance-and-uncertainty


The chapter does address statistical dependence and correlations between uncertainties among inputs 
and how these can be incorporated in Monte Carlo uncertainty propagation methods. It does not present 
the Taylor series method in full but is restricted to simplified versions of it that address addition, 
subtraction and multiplication. 
 
The focus of the chapter is on uncertainties in input data, but there is some attention for dealing with 
model uncertainty. Model uncertainty is typically characterised by an additive residual whose 
probability distribution can be derived from comparing model predictions with independent 
measurements of the response variable.  
 
Finally, the chapter provides guidelines for reporting and documentation and provides two concrete 
examples of uncertainty estimates for inventories. 
 
Chapter 3 of Volume 1 of Calvo et al. (2019) presents refinements to the  2006 IPCC Guidelines. It only 
addresses uncertainty in data. It starts by stating that an uncertainty assessment consists of four parts: 

1. Rigorous investigation of the likely causes of data uncertainty; 
2. Development of quantitative uncertainty estimates and parameter correlations; 
3. Mathematical combination of those estimates when used as inputs to a statistical model; 
4. Selection of inventory improvement actions in response to the results of the previous three parts. 

 
Here, steps 1 and 2 refer to the probabilistic modelling of uncertainty as discussed in Section X.1 of this 
report, while step 3 addresses uncertainty propagation methods discussed in Section X.2. 
 
The chapter pays much attention to reduction of uncertainties and mentions that this can be achieved in 
seven broad ways: 

1. Improving conceptualisation; 
2. Improving models; 
3. Improving representativeness; 
4. Using more precise measurement methods; 
5. Collecting more data that are measured; 
6. Eliminating known risk of bias; 
7. Improving state of knowledge; 
8. Moving to higher tier method. 

 
The chapter also explains the crucial difference between a standard deviation (measure of variability) 
and standard error (measure of uncertainty). With regard to uncertainty in activity data, it pays attention 
to how uncertainty due to sampling variability is assessed under different probability sampling designs, 
such as simple random sampling, stratified sampling, systematic sampling and two-stage sampling. 
There is also refinement to the Taylor series uncertainty propagation methodology, by incorporating 
correlations between uncertain inputs, as in Eq. 4 above. However, this is not incorporated in the 
equations provided in the chapter and neither is an extension made to models that are not additive, 
subtractive or multiplicative. 
 
X.4.2 IPCC chapters ‘Quality Assurance / Quality Control and Verification’ 

Chapter 6 of Volume 1 of Eggleston et al. (2006) and Chapter 6 of Volume 1 of Calvo et al. (2019) 
present QA/QC and verification procedures to be used in the development of national greenhouse gas 
inventories. 
 
Quality Control (QC) is defined as a system of routine technical activities to assess and maintain the 
quality of the inventory and designed to: 

1. Provide routine and consistent checks to ensure data integrity, correctness and completeness; 



2. Identify and address errors and omissions; 
3. Document and archive inventory material and record all QC activities. 

 
Quality Assurance (QA) is a planned system of review procedures conducted by personnel not directly 
involved in the inventory process. It refers to reviews performed by independent parties. Verification 
refers to activities and procedures that help establish the reliability of an inventory. It involves the use 
of independent data and comparisons with inventory estimates made by other bodies or through 
alternative methods. It is noted that it is important to distinguish verification, as defined by the IPCC 
guidelines, from the term verification used in carbon markets, which is synonymous with an independent 
audit. 
 
The chapters address practical considerations in developing QA/QC and Verification systems and 
explain the key elements of these systems. There is also reference to ISO standards related to quality 
management systems. Next, the chapters address category-specific QC procedures in detail, such as used 
for emissions or removals data QC and activity data QC. It also covers calculation-related QC, among 
others paying attention to checks of the calculation algorithm that will safeguard against duplication of 
inputs, unit conversion errors and other calculation errors. 
 
The chapters compare the QA/QC process with uncertainty analyses procedures. For instance, the 
QA/QC process could identify critical components of the inventory estimates and data sources that 
contribute to the uncertainty and which should therefore be included in the uncertainty assessment. 
Conversely, the uncertainty assessment can provide insight into uncertainty propagation and hence 
inform the QA/QC system. 
 
Chapter 6 of Volume 1 of Calvo et al. (2019) presents a detailed refinement on the components needed 
for GHG emission inventory verification using atmospheric measurements. It lists the key elements 
needed and works this out for four target gases (methane, carbon dioxide and nitrous oxide and 
fluorinated gases). It also presents a refinement on the use of complimentary observations and global 
modelling products for verification. Here, the use of inverse modelling and satellite observations become 
important. The chapter also addresses a gap in the 2006 IPCC Guidelines related to the development 
and use of models. It makes a case for using more complex models although it also notes some well-
known adverse effects of modelling. It provides a good practice use of models that can protect against 
these adverse effects.  
 
X.4.3 IPCC chapters ‘Forest land’  

Chapter 4 of Volume 4 of Eggleston et al. (2006) and Chapter 4 of Volume 4 of Calvo et al. (2019) 
provide methods for estimating greenhouse gas emissions and removals due to changes in biomass, dead 
organic matter and soil organic carbon on forest land and land converted to forest land. Both chapters 
include sections on uncertainty assessment, which consider source-specific uncertainties for biomass, 
dead organic matter and soil carbon. 
 
The source-specific uncertainties for biomass are emission and removal factors and activity data. It is 
recognised that, due to limited data availability, uncertainty in the estimates of changes of carbon stock 
in dead organic matter is generally larger than that of the estimates of changes in carbon stock in 
biomass. For soil carbon inventories, three broad sources of uncertainty are distinguished: 

1. Uncertainties in land-use and management activity and environmental data; 
2. Uncertainties in reference soil carbon stocks if using tier 1 or 2 approaches; 
3. Uncertainties in carbon stock change/emission factors for tier 1 and 2 approaches, and model 

structure and parameter error for tier 3 model-based approaches, and measurement error and 
sampling errors associated with tier 3 measurement-based inventories. 

 



For uncertainty propagation analysis, both chapters rely on simple uncertainty propagation methods (i.e., 
as derived from the Taylor series method), useful for tier 1 and tier 2 approaches, and Monte Carlo 
simulation, appropriate for tier 3 approaches. 
 
The chapters specifically address the case where land is converted to forest land, which has the same 
uncertainty sources as before but in addition also uncertainties related to the land use conversion itself.  
 
Chapter 4 of Volume 4 of Calvo et al. (2019) presents tables with quantified uncertainty about variables 
such as the ratio of below-ground biomass to above-ground biomass, above-ground biomass and above-
ground net biomass growth, but it is not explained how these figures were derived and neither is it 
explained to what spatial support these figures refer. 
 
X.5 Conclusions 

Three main sources of uncertainty in GHG estimates are uncertainty in input data, model parameters 
and model structure. These uncertainties will propagate to the model output. There is a rich scientific 
literature on uncertainty quantification and uncertainty propagation, also in applications to GHG 
emission modelling. 
 
Uncertainty in model inputs can best be represented by probability distributions. This is not an easy task 
in GHG accounting because to do this properly it must also account for cross-correlation, temporal 
correlation, and spatial correlation. Uncertainty in model parameters is also represented by probability 
distributions and can be assessed if measurements of the model output are available, so that parameter 
uncertainty can be quantified using Bayesian calibration. Uncertainty in model structure is difficult to 
assess and usually represented by an additive noise term. 
 
Once uncertainties in model inputs, parameters and model structure are quantified it is fairly easy to 
analyse the uncertainty propagation. This can be done with the Taylor series method and the Monte 
Carlo method. Both methods also allow to assess the contributions of individual uncertainty sources to 
the overall output uncertainty. 
 
Uncertainty in GHG estimates depends on the spatial and temporal support for which estimates are 
derived. Uncertainty tends to be smaller for larger supports, such as when averages or totals for large 
regions or countries are made. This effect is seldom properly assessed. 
 
IPCC and UNFCCC guidelines for national greenhouse gas inventories also represent uncertainty by 
probability distributions and use the Taylor series method and Monte Carlo simulation to trace the 
propagation of uncertainties. These guidelines are summaries of methods from the scientific literature 
although they also provide concrete recipes for specific cases.  
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