GUIDELINES FOR THE DESCRIPTION AND CODING OF SOIL DATA

E.J. van Waveren and A.B. Bos

Revised edition July 1988

S10 - 14

Wageningen

ATIONAL SOIL REFERENCE AND INFORMATION CENTRE

- Technical Paper 14. Guidelines for the description and coding of soil data. Revised edition, July 1988
- Technical Paper 15. ISRIC Soil Information System user and technical manuals. Revised edition, July 1988
- ISIS computer programme on 2 diskettes (MS-DOS 5.25")

Total price for developed countries US \$ 100.00 Total price for developing countries US \$ 50.00

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Waveren, E.J. van

Guidelines for the description and coding of soil data / E.J. van Waveren and A.B. Bos - Wageningen:
International Soil Reference and Information Centre. - (Technical paper / International Soil Reference and Information Centre ;14)
Eerder verschenen: 1987. - Met lit. opg.
ISBN 90-6672-036-0
SISO 631.2 UDC 631.4
Trefw.: bodemkunde.

ISRIC's Soil Information System (ISIS) was developed to enable the storage of site and profile descriptions and analytical data of our soil profile collection in a computerized database.

The basis for ISIS and the present Technical Papers 14 and 15 was laid by Mr. E. van Waveren. The programme was subsequently improved by Mr. A.B. Bos, aided by Mr. J. Verhagen, making use of many suggestions received since the first draft was made available last year.

ISIS is suitable for personal and micro-computers using MS-DOS and is available for IBM and compatible computers. The system uses dBASEIII.

Although developed to serve ISRIC's internal needs, due to its flexibility ISIS can also be employed as a prototype for the development of a soil database at any soil centre.

ISRIC is very willing to cooperate with national soil centres, especially in developing countries, at such an undertaking.

No computer programme is perfect; we look forward to receiving comments for improvements.

Dr. W.G. Sombroek Director

CONTENTS

Foreword

Introduction					. 1
SITE DESCRIPTION					^
Tracking of Alexander	٠.				. 2
Location of the site				٠.	. 2
Classification				٠.	. 2
CLIMATIC DATA					. 4
SITE DESCRIPTION					6
Parent material/parent rock	• •	• •	٠.	• •	.0
Effective soil donth	• •	• •	• •	• •	. 6
Effective soil depth	• •	٠.	• •	• •	. 8
Geomorphology	• •			٠.	. 9
Landform					. 9
Slope characteristics	• • •				. 10
Microrelief					. 1
Surface characteristics					. 1
Hydrology					.13
Denudation and aggradation					.1!
Land use and vegetation					. 16
PROFILE DESCRIPTION					. 19
Horizon number					. 19
Designation					. 19
Depth					. 19
Boundary					. 19
Colour					. 19
Texture		•			10
Organic matter	•	•	• •	• •	20
Structure	• •	•	• •	• •	20
Consistence	• •	•		• •	. Z C
Pores	• •	•	• •	• •	25
Roots	٠.	•	•	• •	. Z .
CaCO3	• •	•		• •	26
рН	٠.	•	. •	• •	. ZC
Mottles	• •	•	•	• • •	. ZC
Cutans	• •	•		• •	. 21
Inclusions	• •	•	• •	• •	. 27
Rock	• •	•	•	• • •	. 28
Pane	٠.	• •	•	• • •	. 28
Pans	٠.		•	• • •	. 29
Biological activity		٠.		٠.,	. 29
REFERENCES					. 30
APPENDIX					2 1
Glossary	• •	٠.	• •		. J I
Country codes	• •	٠.	• •		<u>ا</u> د.
FAO/UNESCO classification codes	• •	٠.			33
Soil Tayonomy (ISDA (CCC) olerates and	٠.	٠.	• •		. 34
Soil Taxonomy (USDA/SCS) classification codes					35

ISRIC SOIL DESCRIPTION FORM FOR CODED INFORMATION

INTRODUCTION

The guidelines presented here were developed to enable the storage of the site and profile descriptions of the soils of the ISRIC reference collection in a computerized soil database ISRIC Soil Information System (ISIS). They are based on the FAO Guidelines for soil profile description (1977) and are in fact a more schematic presentation of the former ISRIC (ISM) guidelines (Spaargaren, 1980).

The major points of difference with the former ISRIC guidelines are:

- The number of site variables increased considerably due to the more schematic approach.
- The majority of the non numerical site information is recorded in classes to increase the uniformity of the descriptions in order to optimize selection procedures and to reduce the size of the database.
- Numerical class codes were omitted to increase the readability and to simplify the filling in of the forms.

These guidelines should be used with the ISRIC SOIL DESCRIPTION FORM FOR CODED INFORMATION (see appendix C).

Please note that the information on the soil can only be entered in ISIS if these guidelines are strictly followed. Please do not make any modifications in the classification of the variables or the coding of the classes, and do not add new variables.

Please note that in this report the letter capital o = '0' and zero = 'g'. If the description according the guidelines is not fully satisfactory use the descriptive part at the end of the site description form for additional information or remarks.

Terms marked with * are explained in appendix A.

ISIS

ISIS is a computerized soil database developed for micro computers. It uses dBASEIII, a well known relational database management system (ASHTON-TATE). It is primarily developed to handle the documentation of the ISRIC soil reference collection. Due to its flexibility ISIS can also be used as a prototype for the development of a soil database in a non-ISRIC environment.

Write to ISRIC, P.O.Box 353, 6700 AJ Wageningen, the Netherlands to obtain further information and/or ISIS programs.

```
SITE DESCRIPTION --- page 2 ---
```

SITE DESCRIPTION

Enter month and year.

COUNTRY

DATE

Enter country code. (see appendix B 1.)

ISRIC CODE

Enter ISRIC soil code.

AUTHOR

Upto 20 characters.

Location of the site

LOCATION

Upto 70 characters. Indicate as detailed as possible.

LATITUDE

Enter N or 5/degrees/minutes/seconds.

LONGITUDE

Enter E or W/degrees/minutes/seconds.

ALTITUDE

In m.a.s.l.. When below sea level, add - (minus sign)

Classification:

FAO/UNESCO (1974)

FAO SOIL UNIT Enter soil unit code (see appendix B 2).

PHASE

Enter phase:

st stony

x fragipan

pe petric

mq duripan

mk petrocalcic z saline

li lithic шу petrogypsic

so sodic

ph phreatic

ce cerrado

ms petroferric

SOIL TAXONOMY (USDA/SCS, 1975)

GREAT GROUP

Enter great group code (see appendix B 3).

SUB GROUP

Enter sub group code (see appendix B 3).

TEXTURE

Enter texture class (see appendix B 4).

MINERALOGY

Enter mineralogy class (see appendix B 4).

<u>STR</u>

Enter soil temperature regime:

pg pergelic

ht hyperthermic

cr cryic

if isofrigid

fr frigid

im isomesic

me mesic

it isothermic

th thermic in isohyperthermic

SMR

Enter soil moisture regime:

aq aquic ud udic
pq peraquic pu perudic
ar aridic us ustic
to torric xe xeric

Other diagnostic criteria according to FAO/UNESCO (1974) and USDA/SCS (1975).

DIAGNOSTIC HORIZONS

Enter diagnostic horizons. There is space for three entries:

al albic	pc petrocalcic	an	anthropic
ag agric	pg petrogypsic	hi	histic
ar argillic	pl placic	шо	mollic
cl calcic	sa salic	oc	ochric
ca cambic	so sombric	um	umbric
gy gypsic	sp spodic	pa	plaggen
na natric	su sulfuric	du	duripan
fr fragipan	ox oxic		

DIAGNOSTIC CRITERIA

Enter (other) diagnostic criteria. There is space for two entries:

at abrupt textural change	1 i	lithic contact
al albic material	шо	mottles with chroma<2
am exchange complex dom.	Nv	n - value
by amorphous material	p£	permafrost
cl paralithic contact	sq	plinthite
cf petroferric contact	s1	slickensides
co COLE	sc	smeary consistence
du durinodes	k	soft powdery lime
fa ferralic properties	su	sulfidic material
fe ferric properties	ta	tak y ric
gl gilgai	tx	thixotropy
or high org matter in B	ir	thin iron pan
sa high salinity	to	tonguing
hy hydromorphic properties	ve	vertic properties
if interfingering	we	weatherable minerals

LOCAL Local classification or soil name. Descriptive upto 30 CLASSIFICATION characters. If more space is required use general description

```
CLIMATE
```

KOPPEN

Enter climate classification according to Köppen:

(Trewartha, 1968)

Af tropical wet climate

Am tropical monsoon climate

Aw tropical "wet-and-dry" climate (savanna)

BW arid (desert) climate

BS semi-arid (steppe) climate

Cf mild temperate rainy climate with no distinct dry season

Cw mild temperate rainy climate with dry winters

Cs mild temperate rainy climate with dry summers

Df cold snow-forest climate with humid winters

Dw cold snow-forest climate with dry winters

ET polar tundra climate

EF polar perpetual frost climate

Other lower case characters used, with:

A climates: w' rainfall maximum in autumn

w" two distinct rainfall maxima

s dry season during high-sun period

i temperature range between warmest and coolest month $< 5\,^{\circ}\mathrm{C}$

B climates

h hot climate

k cool climate k' cold climate

s dry summers

w dry winters

n frequent fog

C climates

a hot summers

b cool summers

i temperature range between warmest and coolest month $<5^{\circ}\text{C}$

x rainfall maximum late spring; drier in late summer

n frequent fog

D climates

d extremely cold winter month

f, s, w, a, b, c: see C climate

Entry of climatic data: on the description form is space for data of at most three climatic variables recorded on one single climate station. The ISIS database itself has no limitations in number of stations or number of variables per station.

STATION Enter name of climate station; up to 20 characters.

LATITUDE Latitude of station. Enter: N or S / degrees / minutes.

LONGITUDE Longitude of station. Enter: E or W / degrees / minutes.

ALTITUDE Enter altitude of station in m.a.s.l.; when below sea level,

enter - (minus sign)

DISTANCE Enter distance in km between site and climate station. DIRECTION

Enter direction site --> climate station:

NNW	N	NNE
NW	1	NE
WNW	ĺ	ENE
W	site	E
WSW	- 1	ESE
SW	ĺ	SE
SSW	S	SSE

RELEVANCE

Relevance of station's data to soil site (DAY (ed),1983):

- v very good: site of station is identical to soil site
- g good: site of station and soil site are sufficiently similar to allow for macro and intermediate levels of climatic interpretations
- m moderate: sufficiently similar to allow for macro climatic interpretations
- p poor: no reliable climatic interpretations possible

CLIMATIC DATA Enter mean monthly and annual figures for each variable.

DATA KIND

Enter kind of variable:

CAUTION !! CODE SHOULD BE ENTERED EXACTLY AS LISTED BELOW !!

T mean temperature in degrees Celcius

Ti min temp

Ta max temp

P precipitation in mm

Pd number of rain days

E potential evapotranspiration in mm

Et thornthwaite

Ep penman

Ef frere, popov

Eb blaney-criddle

Ea papadakis

Eu turc

A actual evaporation in mm

Ao class A pan

Ac colorado pan

Ap piche

H relative humidity (%)

U wind speed in m/sec at 2 m height

If the wind speed is measured at different height, it should be corrected to wind speed at 2 m height with the following factor: (Doorenbos and Pruitt, 1975)

Measuring height(m):
Correction factor:

0.5 1 1.5 2 3 4 5 6 8 10 1.35 1.15 1.06 1.0 0.93 0.88 0.85 0.83 0.81 0.80

n hours of bright sunshine (hours/day)
nN percentage bright sunshine (%)

R total global radiation (MJ.m⁻2.day⁻1)

Re estimated total global radiation(MJ.m-2.day-1)

x other data specify in remarks

$$1MJ.m^{-2}$$
 = 23.885cal/cm⁻² = 23.885 langley
= 27.778mWhr.cm⁻²
= 0.404mm water

If variable and/or method of recording is not included in the table: give a full description of variable and/or method in descriptive part.

PERIOD

Number of years of record.

Parent material/Parent rock

Parent material is defined as the unconsolidated mineral or organic material from which the true soil develops. Parent rock is defined as the rock mass from which the parent material is derived (PARKER (eds),1984).

There is space available for a sequence of at most two types of parent material/rock. Use the descriptive part if more space is required (REMARKS).

MODE

Mode of accumulation or deposition of parent material. (after USDA/SCS,1979):

- a alluvium
- e eolian mixed/undifferentiated
- w loess
- s eolian sand
- h volcanic ejecta
- 1 lacustrine, inclusive fluvio and glacio lacustrine
- y estuarine sediments
- m marine sediments
- c colluvium*
- v slope wash*
- f fluvio-glacial deposits
- i ice-pushed materials
- g glacial outwash*
- t glacial till*
- d glacial drift*
- o organic sediments
- x residual (in situ weathered) materials
- u unconsolidated, unspecified
- r solid rock
- b man-made

table 1. Parent rock types

		ed lithology and composition		
		noncalcareous or acid rocks	y 2	calcareous rocks
		mixed lithology, unspecified	y 4	igneous/metamorphic/
	y5	igneous/ metamorphic rocks		sedimentary rocks
	y 7	metamorphic/sedimentary rocks	y6	igneous/sedimentary rocks
wø	cher	nically highly weathered materials c9	con	glomerate(unspecified)
•		vorked materials)	c1	non calcareous
	w1	lateritic material	c2	calcareous
	w2	bauxitic material		
i g	igne	eous rocks (unspecified)	15	fine, unspecified
		coarse , unspecified	i6	fine, basic (e.g.basalt)
		coarse , basic	i7	
		oddiso , susio	_,	(e.g.andesite)
	т3	coarse , intermediate(e.g.diorite)	τg	fine, acid(e.g.rhyolite)
	14		19	fine, ultrabasic
	14	coarse, actu (e.g.granite)	17	Tine, dictabasic
т9	meta	amorphic rocks (unspecified)	т5	<pre>schist/phyllite,unspeci- fied</pre>
	m1	gneiss, unspecified	ш6	schist/phyllite,acidic
	m2	gneiss, acidic	m7	schist/phyllite,basic
	ш3	gneiss, basic	ш8	slate
	ш4	serpentinite	ш9	quartzite
ьø	sedi	imentary rocks,interbedded (unspecified)	b 4	limestone/siltstone
•		limestone/sandstone and shale	b 5	sandstone/shale
		limestone/sandstone	b6	sandstone/siltstone
	b3	limestone/shale	b7	shale/siltstone
aØ	sano	dstone (unspecified)	a3	graywacke*
		noncalcareous, unspecified	a4	calcareous, unspecified
		arkosic*		delegation of the second
h ø	shal	le (unspecified)	t Ø	siltstone (unspecified)
,		noncalcareous	t1	noncalcareous
		calcareous	t2	calcareous
19		estone (unspecified)	14	phosphatic
		chalk	15	arenaceous (sandy)
	12	marble	<i>16</i>	argillaceous
	13	dolomitic	17	cherty
sØ	(otl	her) sedimentary rocks (unspecified) ug	cla	ystone (unspecified)
	s1	marl, unspecified		noncalcareous
	s2	glauconite	u2	calcareous

SITE DESCRIPTION --- page 8 ---

table 1. continued

kØ miscellaneous organic material k1 mossy material k2 herbaceous material k3 woody material k4 wood fragments >1 m k5 wood fragments >1 m k6 charcoal TEXTURE Enter texture of parent material sa sandy lo loamy st stony sc sandy clay cl clayey mx mixed si silty gr gravelly or organic WEATHERING General characterization of status of weathering of solid rock: s slight p partial/moderate h high RESISTANCE Resistance against weathering (solid rock only): v very high h high m moderate l low DEPTH Enter depth of lithological boundary in cm. REMARKS Additional remarks parent material/rock up to 20 characters. If more space is required use general descriptive part. EFFECTIVE SOIL DEPTH Enter effective soil depth in cm. Effective soil depth is the depth to which roots can easily penetrate throughout the	p2 tuff,ac p3 tuff,ba p4 volcani p5 volcani p6 volcani p7 tuff b	unspecified* cidic asic ic breccia, unspeci ic breccia,acidic ic brecccia,basic breccia* /cinders*	fied*	e1 e2 e3 e4 e5 e6	ash, u ash,ac ash,ba lapill lapill lapill	sic i, unspecified* i,acidic
Sa sandy lo loamy st stony sc sandy clay cl clayey mx mixed si silty gr gravelly or organic WEATHERING General characterization of status of weathering of solid rock: s slight p partial/moderate h high RESISTANCE Resistance against weathering (solid rock only): v very high h high m moderate l low DEPTH Enter depth of lithological boundary in cm. REMARKS Additional remarks parent material/rock up to 20 characters. If more space is required use general descriptive part. EFFECTIVE SOIL DEPTH Enter effective soil depth in cm. Effective soil depth is the depth to which roots can easily penetrate throughout the	kl mossy m k2 herbace	material eous material	1	k5	wood fi	ragments >1 m
SC sandy clay cl clayey mx mixed si silty gr gravelly or organic WEATHERING General characterization of status of weathering of solid rock: s slight p partial/moderate h high RESISTANCE Resistance against weathering (solid rock only): v very high h high m moderate l low DEPTH Enter depth of lithological boundary in cm. REMARKS Additional remarks parent material/rock up to 20 characters. If more space is required use general descriptive part. EFFECTIVE SOIL DEPTH Enter effective soil depth in cm. Effective soil depth is the depth to which roots can easily penetrate throughout the	TEXTURE	Enter texture of p	arent	material		
rock: s slight p partial/moderate h high RESISTANCE Resistance against weathering (solid rock only): v very high h high m moderate 1 low DEPTH Enter depth of lithological boundary in cm. REMARKS Additional remarks parent material/rock up to 20 characters. If more space is required use general descriptive part. EFFECTIVE SOIL DEPTH Enter effective soil depth in cm. Effective soil depth is the depth to which roots can easily penetrate throughout the		sc sandy clay	c1	clayey	шх	mixed
P partial/moderate h high RESISTANCE Resistance against weathering (solid rock only): v very high h high m moderate l low DEPTH Enter depth of lithological boundary in cm. REMARKS Additional remarks parent material/rock up to 20 characters. If more space is required use general descriptive part. EFFECTIVE Enter effective soil depth in cm. Effective soil depth is the depth to which roots can easily penetrate throughout the	WEATHERING	General characteri	zatio	n of status	of weath	ering of solid
v very high h high m moderate l low DEPTH Enter depth of lithological boundary in cm. REMARKS Additional remarks parent material/rock up to 20 characters. If more space is required use general descriptive part. EFFECTIVE SOIL DEPTH Enter effective soil depth in cm. Effective soil depth is the depth to which roots can easily penetrate throughout the		p partial/moder	ate			
h high m moderate 1 low DEPTH Enter depth of lithological boundary in cm. REMARKS Additional remarks parent material/rock up to 20 characters. If more space is required use general descriptive part. EFFECTIVE Enter effective soil depth in cm. Effective soil depth is the depth to which roots can easily penetrate throughout the	RESISTANCE	Resistance against	weath	nering (soli	d rock o	nly);
REMARKS Additional remarks parent material/rock up to 20 characters. If more space is required use general descriptive part. EFFECTIVE Enter effective soil depth in cm. Effective soil depth is the depth to which roots can easily penetrate throughout the		h high m moderate				
If more space is required use general descriptive part. EFFECTIVE Enter effective soil depth in cm. Effective soil depth is the depth to which roots can easily penetrate throughout the	<u>DEPTH</u>	Enter depth of lit	hologi	cal boundar	y in cm.	
SOIL DEPTH depth to which roots can easily penetrate throughout the	- Full material / Tock up to 20 characters.					
	SOIL DEPTH depth to which roots can easily penetrate throughout the					

Geomorphology

LANDFORM

Enter regional landform. If necessary specify in general descriptive part.

table 2. Regional landforms (based on McDonald et al.,1984)

```
ШΟ
     mountain (unspecified)
hi
     hill (unspecified)
h1
     low hill
     inselberg*
in
     valley (unspecified)
va
     basin (unspecified)
ib
     intermontane basin
b1
     badlands*
     man-made
ШΩ
     plain (unspecified)
up
pu
     plateau
     peneplain*
рe
     alluvial plain (unspecified)
ap
af
     floodplain
     stagnant alluvial plain *
as
     alluvial terrace
at
     delta
ad
     piedmont features(unspecified)
рш
     alluvial fans/bajada/sheetflood fans
pa
     pediment*
рp
     pediplain*
p1
ср
     coastal plain
cb
     beach ridge
cf
     tidal flat
     marine terrace
ct
1c
     (fluvio) lacustrine plain
     playa*
ру
g£
     fluvioglacial plain
     kame*
gk
     fluvioglacial terrace
gt
go
     outwash plain
     glacial plain (till)
gp
     moraine
gm
     sand plain
sp
     dune field
du
vu
     volcano
     caldera
ca
```

1a

lava plain

------TOPOGRAPHY Topography of the surrounding country (FAO, 1977): £ flat or almost flat: slopes < 2 % undulating : u steepest slopes 2 - 8 % steepest slopes 8 -16 % steepest slopes 16 - 30 %, r rolling : h hilly : range of elevation being **moderate** steeply dissected : steepest slopes > 30 %, range of elevation being moderate mountainous : topography has great range of elevation PHYSIOGRAPHIC Describe physiographic unit in the immediate surrounding of UNIT of the site. Continue in general descriptive part if more space is required. POSITION OF Enter physiographic position of the site: SITE *l lower slope* v open depression u upper slope s slope unspecified d depression(closed) m middle slope f flat -----Slope characteristics SLOPE GRADIENT Enter slope gradient of the land immediately surrounding the site (in %). **FORM** Form of the slope surrounding the site: v convex s straight u undulating c concave x complex **ASPECT** Aspect (exposure) of site: N, NNE, NE, ENE, E, ..., NNW.

NN	V	N	NNE	
NW		1	NE	
WNW		İ	EN	E
W	- si	.te		E
WSW			ES	E
SW		1	SE	
S	SW	S	SSE	

Microrelief

Small-scale differences in relief within the immediate vicinity of the site. (based upon FAO, 1986)

KIND

v level

d dimples or craddle - knoll:depressions and associated

mounds left by uprooted trees

w coppice mounds: wind blown material accumulated and

stabilized around plants

k knobs

f frost polygons

g gilgai

m mounds (termites)

n animal tracks

1 levee, artificial: due to digging and cleaning of

drainage and irrigation canals

s slick spots or scabby spots

t terracettes

r ripples

h holes and galleries due to burrowing animals

a terracing, artificial

Microrelief formed by soil erosion is excluded from this item and described under denudational-aggradational processes.

<u>PATTERN</u>

9 none

1 linear r reticulate

c closed depression

i isolated

HEIGHT

Enter variation in height in cm.

Surface characteristics

ROCK OUTCROPS Enter rock outcrop class (FAO, 1977):

Ø nil, positive statement

1r little rocky : less than 2% rock exposed

fairly rocky :

fr

exposures roughly 10-35 m apart,

coverage 2-10%

ro rocky exposures roughly 10-35 m apart,

coverage 10-25%

very rocky exposures roughly 3.5-10 m apart, vr

coverage 25-50%

exposures up to 3.5 m apart, extremely rocky: er

coverage 50-90%

ou outcrop : coverage over 90%

SITE DESCRIPTION --- page 12 ---STONINESS Enter surface stoniness class (FAO,1977): nil, positive statement WS very few stones fs fairly stony : coverage 0.01-0.1% stony st : coverage 0.1-3% vs very stony : coverage 3-15 % exceedingly stony: coverage 15-90% es rubble land STONE SIZE Enter average size of stones in cm **SHAPE** (sub)rounded b angular blocky a angular irregular P platy, flat CRACKING g nil, positive statement C (small) cracks: width < 1 cm or depth < 50 cm 1 large cracks : width > 1 cm or depth > 50 cm SLAKING/ Slaking of aggregates by tillage, rainfall or frost CRUSTING (USDA/SCS, 1979): g nil, positive statement partly slaked, round smooth aggregates P slaked: sorted sand/silt, some clay films capped, crust on drying

Enter thickness and nature of crust/seal in profile description.

ALKALI/SALT

Evidence of alkali/salt (USDA,1951). The classification given below is used to describe evidence of salt as well as evidence of alkali:

- g soils free of excess alkali or salt. Practically no crops are inhibited by, or show evidence of injury from excess salts or alkali
- s soils slightly affected by salt or alkali. The growth of sensitive crops is inhibited but that of salt tolerant crops may not be.
- m soils moderately affected by salt or alkali. Crop growth is inhibited and no crop does well
- r soils strongly affected by salt or alkali. Only a few kinds of plants survive

If conductivity measurements and/or analytical data are available the following classes can be recognized:

class		alkali (ESP)	salt (mS/cm)		
g	nil	0 - 5	0 - 4		
S	slight	5 - 15	4 - 8		
m	moderate	15 - 25	8 - 15		
r	strong	> 25	> 15		

<u>Hydrology</u>

<u>KIND</u>

Indicate kind of water table (USDA, 1979):

n no water table observed

p perched *

f flooded

a apparent

w groundwater table

DEPTH

Enter depth of water table in cm

FLUCTUATION

Enter (estimated values of) upper and lower limits of the

water table in cm

PERMEABILITY

SLOW PERMEABLE Enter upper and lower limits of slow permeable or stagnating

<u>LAYER</u>

layer in cm. Enter N if no slow permeable layer is observed.

Estimated permeability of least permeable part of the profile:

s slow

m moderate

h high

Quantitative data are recorded in general descriptive part

FLOODING FREQUENCY Indicate flooding frequency, if necessary specify in general

descriptive part (FAO, 1986):

n nil, positive statement

y yearly

d daily

i irregular

m monthly

NATURE

Nature of flood water:

s saline

x oxygenated

b brackish

w still or stagnant

f fresh

Enter additional information (e.g. time and duration of

flooding in general descriptive part)

RUN OFF

Estimated run off:

p ponded

m medium

v very slow

r rapid

s slow

a very rapid

DRAINAGE CLASS

(FAO,1977), intergrades are indicated by a combination of both class codes: e.g. 34 = class 3 to 4.

- yery poorly drained; water is removed from the soil so slowly that the water table remains at or on the surface the greater part of the time. Soils of this drainage class usually occupy level or depressed sites and are frequently ponded.
- 1 poorly drained; water is removed so slowly that the soil remains wet for a large part of the time. The water table is commonly at or near the surface during a considerable part of the year. Poorly drained conditions are due to a high water table, to a slowly permeable layer within the profile, to seepage, or to a combination of these conditions
- imperfectly drained; water is removed from the soil slowly enough to keep it wet for significant periods but not all of the time. Imperfectly drained soils commonly have a slowly permeable layer within the profile, a high water table, additions through seepage or a combination of these conditions
- moderately well drained; water is removed from the soil somewhat slowly, so that the profile is wet for a small but significant part of the time. Moderately well drained soils commonly have a slowly permeable layer within or immediately below the solum, a relatively high water table, additions of water through seepage or some combination of these conditions
- 4 well drained; water is removed from the soil readily but not rapidly. Well drained soils commonly retain optimum amounts of moisture for plant growth after rains or additions of irrigation water
- 5 somewhat excessively drained; water is removed from the soil rapidly. Many of these soils have little horizon differentiation and are sandy and very porous
- 6 excessively drained; water is removed from the soil very rapidly. Excessively drained soils are commonly lithosols or lithosolic and may be steep, very porous or both

Moisture conditions profile:

 DRY
 Profile dry from ... to ... (cm)

 MOIST
 Profile moist from ... to (cm)

 WET
 Profile wet from ... to (cm)

Denudation and aggradation (based upon FAO, 1986)

Indicate nature and intensity of processes at the site and its surroundings (the physiographic unit). If there are any discrepancies between the site and the land surrounding the site, the site data should be entered here. All other information should be entered in the general descriptive part. (based upon FAO, 1986)

EROSION DEGREE

Enter intensity of each type of soil erosion. Here the intensity is only described in general terms. If more accurate data are available it should be entered in the general descriptive part.

ø no erosion
s slight

m moderate r severe

EROSION TYPE

Enter soil erosion type. There is space available for 2 types:

s sheet

r rill:depth <30 cm; completely smoothed by normal cultivation

g gully: depth >30 cm; not smoothed by normal cultivation

w wind

SOIL AGGRADATION

Indicate occurrence of recent soil aggradation (McDONALD et al.,1984):

p nil, positive statement

n not apparent

stable

 \boldsymbol{n}

p present, specify in descriptive part

SLOPE STABILITY

Indicate present stability of slope:

: no evidence of recent mass

movements

m locally unstable : creep, locally shallow earth-

/soil slides,flows

h highly unstable : major part of slope is affected

by shallow and deep slides

/flows etc.

Land use and Vegetation

Describe present land use or vegetation at the <u>immediate sur-roundings of the site</u>. Use REMARKS for additional information on present land use/vegetation. Use the general descriptive part to add information on past land use/vegetation, or to describe deviating land use/vegetation types close to the site in the same physiographic unit.

LAND UTILIZATION TYPE (LUT)

Indicate present land use type. Use REMARKS to specify:

```
a arable farming: unspecified
ah arable farming: high level: intensive use of fertilizers
and pesticides, high level of mechanization
```

am arable farming: medium level

al arable farming: low level: low inputs, low level of mechanization

x mixed farming : unspecified xh mixed farming : high level xm mixed farming : medium level xl mixed farming : low level

pa cultivated pasture

gr (semi) natural grass land, grazed

sh shrub land, grazed wo wood land, grazed

ur urban land

na non agricultural land: surface mines, pit spoils etc.

af afforestation

ve (semi) natural vegetation

fa fallow

CROPS

Indicate present or major crop. Use REMARKS to specify or enter additional crops:

			Ce 5	Page 1 King
cereals:	ce	unspecified	ces	sorghum
	cer	rice	cet	millet
	cew	wheat	cex	other
	cem	maize		
root crops:	rt	unspecified	rty	yam
	rtc	cassava	rtt	taro
	rtp	potatoes	rtx	other

sugar crops: suc sugar cane sub sugar beet

vegetables: ve unspecified fodder crops: fd unspecified condiments: cn unspecified

oil/protein crops: ol unspecified olb castor bean

oly soya bean olh chick pea olg ground nut olu sunflower ola safflower ole sesame olc coconut olo olive oli oil palm olx other

	fibre crops: fruit crops:	fbs fr	unspecifie cotton kenaf sisal unspecifie banana	: : e d ::		jute rosella other citrus
			date palm		_	grapes other
	stimulants:	st stt sta	unspecific tea cocoa			coffee tobacco other
	miscellaneous:	msr man	pyrethrum rubber annual cro perennial other	-	-	
<u>IRRIGATION</u>	Enter main type of irrigation (FAO,1986): <pre> Ø no irrigation, not relevant s seasonally irrigated, supplementary irrigation c continuously irrigated p paddy</pre>					
ROTATION	Enter rotation scheme, specify in REMARKS (FAO,1986): ### not relevant ## ss shifting ## shifting - long fallow bush ## sg shifting - long fallow grass ## cf crop rotation with current fallow ## cc crop rotation ## cg crop-grass rotation ## mono culture					
IMPROVEMENTS	Indicate any other la (FAO, 1986):	and in	nprovements	s, speci	ify i	n REMARKS
	<pre>Ø none ic land clearing id draining</pre>		il it ix	levell. terrac. other	_	

```
VEGETATION
              Enter major vegetation type (FAO, 1986):
TYPE
              closed forest:
                                            £
                                                unspecified
                                            fe evergreen (mainly)
                                            fs semi-deciduous
                                            fd deciduous
                                            fx extremely xeromorphic
              woodland (open stands of
                                                unspecified
                       trees)
                                            we evergreen
                                            ws semi-deciduous
                                            wd deciduous
                                            wx extremely xeromorphic
              shrub:
                                                unspecified
                                            S
                                            se evergreen
                                            ss semi deciduous
                                            sd deciduous
                                            sx extremely xeromorphic(sub
                                                desert)
              dwarf shrub:
                                            d unspecified
                                            de evergreen
                                            ds semi deciduous
                                            dd deciduous
                                            dx extremely xeromorphic(sub
                                                desert)
                                            dt tundra
              herbaceous:
                                            h
                                               unspecified
                                            ht tall grassland
                                            hm medium tall grassland
                                            hs short grassland
                                            hf forb
STATUS
              Enter present status of vegetation (FAO, 1986):
                  primary
              p
                 modified: altered as a result of new biotic factors
              m
                  cut over primary: some trees have been cut
                  secondary
                  degraded
              Enter additional information on present vegetation (e.g.
<u>REMARKS</u>
              dominant species) and land use (e.g. additional crops). Up to
              40 characters
GENERAL
              Enter additional information on site and profile. The infor-
REMARKS ON mation is stored in blocks of 254 characters and blanks
<u>SITE & PROFILE</u> (dBASEIII memo-fields)
PHOTOGRAPHS/ Enter subject and number of slides/photographs:
SLIDES
              la landscape
                                           su soil surface
              pr profile
                                           pd profile details
              ve vegetation
                                           cr crops
              lu land use
                                           er erosion/conservation
              xx other
              (conform the codes used in the ISRIC SLIDE database.)
```

PROFILE DESCRIPTION --- page 19 ---PROFILE DESCRIPTION ISRIC CODE Enter ISRIC profile code. HORIZON NUMBER Enter serial number of horizon. Top horizon: serial number 1. Use number 1,2,3,...,9, continue with a,b,c,d etc. Enter horizon designation according to FAO (1977) DESIGNATION Enter AUGER in case the data are obtained by augering. **DEPTH** Enter upper and lower limit of horizon in cm. BOUNDARY Indicate width and topography of boundary with horizon below (FAO, 1977): Width: Topography: a abrupt : < 2cm s smooth c clear : 2-5 cm w wavy: pockets wider than deep i irregular: pockets deeper than g gradual: 5-12 cm wide d diffuse: > 12cm b broken: boundary discontinuous wide COLOUR Enter dry and moist matrix colour. The colour hues are entered according to a continuous numerical scale. The values and chromas are multiplied by 10. Hue conversion table: Munsell to numerical notation: 2.5R= 25 2.5YR=125 2.5Y=225 2.5GY=325 5 G=450 5 B=650 5 R= 50 5 YR=150 5 Y=250 5 GY=350 10 G=500 10 B=700 7.5R= 75 7.5YR=175 7.5Y=275 7.5GY=375 5 BG=550 N = 80010 R=100 10 YR=200 10 Y=300 10 GY=400 10BG=600 Other (intermediate) hues are allowed, e.g 6YR=160 2R = 20Examples: 2.5R 5 /6 -> 25 50 60 7.5BG 5.5/8 -> 575 55 80 10 R 2 /4 -> 100 20 40 Enter estimated (field) texture (FAO, 1977). Fraction < 2mm:

LLUC	CIOII \ ZIIIII.		
sa	sand	csa	coarse sand
		msa	medium sand
		fsa	fine sand
		vsa	very fine sand
sa	loamy sand	clsa	coarse loamy sand
	-	mlsa	medium loamy sand
		flsa	fine loamy sand
		vlsa	very fine loamy sand
sal	sandy loam	csal	coarse sandy loam
		msal	medium sandy loam
			fine sandy loam
			very fine sandy loam
,	•		
1	loam	sici	silty clay loam

1 loam sicl silty clay loam
sil silt loam sac sandy clay
si silt sic silty clay
sacl sandy clay loam c clay
cl clay loam

PROFILE DESCRIPTION --- page 20 ---

Frac	tion 0.2-7.5 cm:	Fra	ction 7.5 - 25	cm:
_	slightly gravelly	SS	slightly stony	2-15%
_	gravelly	st	stony	15-50%
_	very gravelly	VS	very stony	50-90%
ga	gravel	so	stones	> 90%

Fraction > 25cm:

bo bouldery 2-50% vb very bouldery 50-90% bl boulders > 90%

ORGANIC MATTER (ORG.MAT) Enter kind and rate of decomposition of organic matter. This item is normally used to describe 0 and H horizons. (Day(ed),1983; FAO, 1986).

Kind:

1 leaves s sphagnum r reeds,sedges
n needles m other moss h herbaceous fragments
w wood c coprogenous u unspecified
fragments earth

Decomposition rate:

9 nil

s slight : > 50% fibric or foliated material m moderate: 10-50% fibric/foliated material h high : < 10% fibric/foliated material

STRUCTURE

When a soil contains aggregates of more than one grade, size, or form the different kinds of aggregates should be described separately. There is space for two types of soil aggregates. Enter largest type first (FAO,1977). See table 3.

Grade:

- g structureless: that condition in which there is no observable aggregation or no definite orderly arrangement of natural lines of weakness. Massive if coherent; single grain if non coherent (see form). If the soil is coherent one of the following codes should be entered:
- wc structureless and weakly coherent
- mc structureless and moderately coherent
- sc structureless and strongly coherent.
- we weak: that degree of aggradation characterized by poorly formed indistinct peds that are barely observable in place. When disturbed, soil material that has this grade of structure breaks into a mixture of few entire peds, many broken peds, and much unaggregated material. If necessary for comparison, this grade may be subdivided into:
- vw very weak
- wm weak to moderate.

- mo moderate: that grade of structure characterized by well formed distinct peds that are moderately durable and evident but not distinct in undisturbed soil. Soil material of this grade, when disturbed, breaks down into a mixture of many distinct entire peds, some broken peds, and little unaggregated material.
- st strong: that grade of structure characterized by durable peds that are quite evident in undisplaced soil, that adhere weakly to one another, and that withstand displacement and become separated when the soil is disturbed. When removed from the profile, soil material of this grade of structure consists very largely of entire peds and include few broken peds and little or no unaggregated material. If necessary for comparison this grade may be subdivided into:

ms moderate-strong

vs very strong

Size:

vf ff	very fine to fine me	fm medi	fine to medium cc	co coarse	coarse to very coarse
fi	fine	mc	medium to coarse	vc	very coarse
For	cm:				
p1	platy	aw	angular blocky	ma	massive
pr	prismatic		(wedge shaped)	pm	porous massive
c1	columnar	gr	granular	sg	single grain
ab	angular blocky	cr	crumb	ir	irregular
sb	sub angular blocky			ro	rock structure

Relationship form 1 -> form 2 (if appropriate):

- t form 1 transitional to form 2
- a form 1 and form 2 both occur
- f form 1 falls apart into form 2

Table 3. Types and classes of soil structure (FAO, 1977)

			TYPES AND CLASSES	SSES OF SOIL STRUCTURE	TURE		
			Type (Shap	Type (Shape and Arrangement of Peds)	of Peds)		
	Platelike with one dimension (the vertical) limited and	Prismlike with two dimensions (the horizontal) limited and considerably less than the vertical; arranged around a	with two dimensions contal) limited and oly less than the arranged around a	Blocklike; polyl dimensions of the around a point.	hedronlike, or sp he same order of	Blocklike; polyhedronlike, or spheroidal, with three dimensions of the same order of magnitude, arranged around a point.	iree ged
Class	greatly less than the other two; arranged around a hori- zontal plane; faces mostly horizontal	vertical line; vertica well defined; vertices angular.	line; vertical faces ined; vertices	Blocklike; blocks or poly- hedrons having plane or curved surfaces that are casts of the moulds formed by the faces of the	ks or poly- plane or that are ulds formed	Spheroids or polyhedrons having plane or curved surfaces which have slight or no accomodation to the faces of surrounding peds	oids or polyhedrons g plane or curved es which have slight accomodation to the of surrounding peds
		Without rounded caps	With rounded caps	Faces flatten- ed; most ver- tices sharply angular	Mixed rounded and flattened faces with many rounded vertices	Re:atively non-porous peds	Porous
	Platy	Prismatic	Columnar	(Angular) Blocky	Subangular Blocky	Granular	Crumb
Very fine or very thin	Very thin platy; 1mm	Very fine pris- matic; 10mm	Very fine col- umnar; 10mm	Very fine an- gular blocky 5mm	Very fine sub- angular blocky 5mm	Very fine gra- nular; 1mm	Very fine crumb; 1mm
Fine or thin	Thin platy; 1 to 2mm	Fine prismatic 10 to 20mm	Fine columnar; 10 to 20mm	Fine angular blocky; 5 to 10mm	Fine subangu- lar blocky; 5 to 10mm	Fine granular; 1 to 2mm	Fine crumb; 1 to 2mm
Medium	Medium platy; 2 to 10	Medium pris- matic; 20 to 50mm	Medium colum- nar; 20 to 50mm	Medium angu- lar; 10 to 20mm	Medium suban- gular; blocky; 10 to 20mm	Medium granu- lar, 2 to 5mm	Medium crumb 2 to 5mm
Coarse or thick	Thick platy; 5 to 10mm	coarse pris- matic; 50 to 100mm	Coarse colum- nar;50 to 100mm	Coarse angular blocky; 20 to 50mm	Coarse suban- gular blocky; 20 to 50mm	Coarse granu- lar; 5 to 10mm	
Very coarse or very thick	Very thick platy; 10mm	Very coarse prismatic; > 100mm	Very coarse columnar; >100mm	Very coarse angular blocky > 50mm	Very coarse subangular blocky;> 50mm	Very coarse granular > 10mm	

CONSISTENCE Consistence. (FAO, 1977)

Consistence when dry:

lo loose : noncoherent

so soft soil mass is very weakly coherent and friable;

breaks to powder or to individual grains under

very slight pressure

slightly: weakly resistant to pressure; easily broken

hard between thumb and forefinger

: moderately resistant to pressure; can be ha hard

> broken in the hands without difficulty but is barely breakable between thumb and forefinger

very resistant to pressure; can be broken in vh very hard

the hands only with difficulty; not breakable

between thumb and forefinger

eh extremely: extremely resistant to pressure, can not be

broken in the hands hard

Consistence when moist:

lo loose : noncoherent

vf very soil material crushes easily under very gentle

friable : pressure, but coheres when pressed together

fr friable : soil material crushes easily under gentle to

moderate pressure between thumb and forefinger

fi firm : soil material crushes under moderate pressure

between thumb and forefinger, but resistance

is distinctly noticeable

soil material crushes under strong pressure, vi very firm:

barely crushable between thumb and forefinger

ef extremely soil material crushes only under very strong

pressure; cannot be crushed between thumb and

forefinger

Consistence when wet:

a) Stickiness:

firm

ns nonsticky: after release of pressure, practically no soil

material adheres to thumb or finger

after pressure, soil material adheres to both SS slightly

: finger and thumb but comes off one or the

other rather cleanly. It is not appreciably

stretched when the digits are separated

st sticky : after pressure, soil material adheres to both

> thumb and finger and tends to stretch somewhat and pull apart rather than pulling free from

either digit

vs very after pressure, soil material adheres strongly sticky : to both forefinger and thumb and is decidedly stretched when they are separated

b) Plasticity:

np non plastic no wire is formable

sp slightly plastic: wire formable but soil mass easily

deformable.

pl plastic wire formable and much pressure

required for deformation of the soil

mass

vp very plastic wire formable and much pressure

required for deformation of the

soil mass

Other (after USDA, 1985):

ws weakly smeary: under moderate strong force between

thumb and forefinger the soil changes suddenly to fluid, the fingers skid and the soil smears, little or no free water remains on fingers

ms moderately smeary:

under moderate force between thumb and forefinger the soil changes suddenly to fluid, the fingers skid and the soil smears, some free water

remains on fingers

ss strongly smeary:

under slight force between thumb and forefinger the soil suddenly changes to fluid, the fingers skid and the soil smears, free water is easily

seen on fingers.

Sf slightly fluid:

when a specimen is squeezed in the hand some material tends to flow between the fingers, but after full pressure is applied most of the residue is left in the hand

vf very fluid:

when a specimen is squeezed in the hand, soil material easily flows between the fingers and after full pressure is applied little or no residue is left in the hand.

PORES

Description of individual pores. There is space for two types of pores. For size and quantity also intergrades may be entered. Intergrades are indicated with the codes of both classes. Enter the code of the class with the lowest value first:

e.g PORE type 1:	few	enter	f
	few to common	enter	f c
	very fine	enter	v
	fine to medium	enter	f m

If more space is required use general descriptive part

Quantity:

g	none			c	сош	on:	50-200/dm3
f	few	:1-50	/dm3	m	many	· :	>200/dm3

Size:

i	micro : < 0.1 mm	c coarse : 5-10 mm
v	very fine: 0.1-1 mm	a very coarse: >10 mm
£	fine : 1-2 mm	t fine to coarse
m	medium : 2-5 mm	w micro to very coarse

Form:

- v vesicular: approx. spherical or ellipsoidal in shape, not appreciably elongated in any direction.
- i interstitial: irregular in shape, with inward curved faces, bounded by angular or curved surfaces or adjacent mineral grains or peds or both.
- t tubular: more or less cylindrical

Orientation (applied to tubular pores)

	- 	•	•
v	vertical	0	oblique
h	horizontal	r	random

Continuity: distribution:

c continuous I inped d discontinuous e exped

b both inped/exped

POROSITY

Total porosity (CANSIS, 1982):

h highly porous : > 60% by volume

m moderately porous: 40-60% s slightly porous: < 40%

```
-----
ROOTS
              There is space for two types of roots, if more space is
              required use descriptive part.
              Quantity (CANSIS, 1982):
                  nil, positive statement
                        :very fine/fine roots 1-10/dm3
                         medium/coarse roots 1/dm3
                  common :very fine/fine roots 10-100/dm3
                         medium roots 1-10/dm3
                         coarse roots 1-5/dm3
                         :very fine/fine roots >100/dm3
                         medium roots > 10/dm3
                         coarse roots > 5/dm3
              Size:
                  very fine: diameter < 1mm
                                            c coarse: > 5 mm
              £
                  fine : 1-2 \text{ mm} \times \text{all, very fine to coarse}
                  medium :
                                  2-5 mm
              Location (USDA, 1981):
                 in cracks
              C
                  in mat at top of horizon
              m
                 between peds
              p
                 matted around stones or gravel
                  throughout
             -----
              The content of calcium carbonate (tested with 10% hydro-
<u>CaCO3</u>
              chloric acid). The reaction to acid can be expected to be
              more vigorous in sandy material than in fine textured mater-
              ial having the same carbonate content.
              Agent:
                 HC1 10%
              h
                 HC1 (unspecified strength)
              Class:
              g
                 non calcareous
                                  : no visible reaction
                 slightly calcareous: slight reaction; scarcely visible,
                                     but detectable to ear
              r
                 calcareous:
                                         strong reaction; bubbles in
                                         simple layer
                 strongly calcareous: violent reaction; foamy, bubbles in
                                    many layers
              Location:
                 throughout
              t
                                    n on nodules
                 on ped faces
                                    c in channels and holes
              1 locally
             Enter field determined pH and indicate the method used in the
pН
             general descriptive part.
```

```
There is space for 2 entries (FAO, 1977):
             Abundance:
                 none, positive statement
                                              c common: 2-20%
                 few: <2%
                                              m many : >20%
             Size:
                fine : < 5mm
                                              c coarse: >15mm
             f
                medium: 5-15 mm
                                              h heterogeneous
               Contrast:
                 faint:
                            indistinct mottles are evident and recogniza-
                            ble only with close examination. Soil colours
                            in both matrix and mottles have closely re-
                            lated hues and chromas
                           although not striking the mottles are readily
                 distinct:
                            seen. The hue value and chroma of the matrix
                            are easily distinguished from those of the
                            mottles. They may vary as much as one or two
                           hues or several units in chroma or value
                 prominent: the conspicuous mottles are obvious and mot-
                            tling is one of the outstanding features of
                            the horizon. Hue, chroma and value may be
                            several units apart
             Sharpness of boundary:
                 diffuse:
                           > 2mm
                 clear : < 2mm
             C
                 sharp
             Enter moist colour of mottles (notation see COLOUR):
             CUTANS
             Cutans/surface features.
             Quantity/abundance (FAO, 1977):
                 patchy
                                    small scattered patches of cutan
              p
                 broken/common :
                                    cutans cover largest part of peds
                 continuous/abundant: cutans cover entire peds
              Thickness(FAO, 1977):
                 thin
                                fine sand grains are readily apparent in
                 (faint)
                                the cutan, bridges between cutans are
                                weak, thickness microscopic
                            : fine sand grains are enveloped in the
                 moderate
                                cutan and their outlines are indistinct
                 (distinct)
                                surface of the cutan is smooth showing no
              t
                 thick
                                outlines of fine sand grains, strong
                  (prominent)
                                bridges between larger grains
              Kind:
                 clay
                                          h
                                              humus
              f
                 clay/sesquioxides
                                         m
                                              mn-hydr./ox
              u clay/humus
                                         z soluble salts
                sesquioxides
                                              silica
              S
                                         q
                slickensides
              р
                                         X
                                              unspecified
                 pressure
```

PROFILE DESCRIPTION --- page 28 ---

	•		
	Location:	_	
	pe ped faces (unspec)		horizontal ped faces
	vp vertical ped faces		hor/vert ped faces
	co top columns	_	grains
- *	up upper surfaces peds	no	
		br	0
	In layer surfaces and		grains
	lp lower surfaces peds		bottom plates
	th throughout	rc	, ,
	ro rock fragments	cr	cracks
INCLUSIONS	Inclusions of pedogenetic origin. entries (FAO,1986).	. The	re is space for two
	Quantity:		
	g none	q	frequent : 15-40 %
	v very few: < 5% by volume	r	_
	f few : 5-15%	d	dominant : > 80 %
	_		
	Type:		
	c concretions	t	crystals
	n nodules	S	soft segregations
	p pedodes*	u	unspecified
	Size:		
	p powdery	m	medium: 2-10 mm
	s small: < 2 mm	1	large : > 10 mm
			_
	Hardness:		
	s soft		
	h hard		
	Shape:		
	s spherical		throad 1th
	i irregular	t	thread like
	a angular	d	dendritic
	a angurar	C	cylindrical
	Composition:		
	k calcareous	£	ferrigenous
	c argilleous	m	manganiferous
	g gypsiferous	z	saline
	q siliceous	u	unspecified
ROCK	Rock and primary mineral fragments	r Th	ere is speed for the
	entries.	5. III	ere is space for two
	Quantity:		,
	none	~	fraguent . 15 /0 c
	v very few: < 5% by volume	q r	frequent : 15-40 %
	f few : 5-15%	đ	very frequent: 40-80 %
	· J *JU	u	dominant : > 80 %
	Size:		
	v very fine: < 2mm	c	coarse : 7.5-12 cm
	f fine : 2mm - 1 cm	a	very coarse: 12-25 cm
	m medium : 1 - 7.5 cm	e	extremely coarse:>25cm
		_	

part

Degree of weathering: fresh (slightly) weathered strongly weathered Nature/composition: descriptive up to 15 characters. If more space is required use general descriptive part. ______ PANS PANS This item includes compact and hardened uncemented as well as indurated horizons. There is space for one entry only. If more space is required use general descriptive part (FAO, 1986)Kind: f fragipan p plough pan k petrocalcic i iron pan (other than 1 iron stone(indurated indurated plinthite) d duripan plinthite) y gypsum pan s salt pan x other, explain in descriptive part Cementation: (Day(ed), 1983; USDA/SCS, 1981; FAO, 1986) 9 non cemented w weakly cemented: the wet cemented soil is brittle and hard but can be broken by hands the wet cemented soil is too hard to s strongly cemented: be broken by hands, but it is easily broken with a hammer i indurated: the wet cemented soil is brittle and so strongly cemented that a sharp blow of a hammer is required to break it Continuity: c continuous d discontinuous b broken Structure: m massive p pisolitic v vesicular n nodular 1 platy -----BIOLOGICAL Biological activity: There is space for two major types. ACTIVITY If more space is required use general descriptive part. (BIOL.ACT.) Abundance: 9 nil q frequent f few r very frequent Kind: m mounds s shells k krotovinas p coprogenic elements w worm channels r termite channels y mycelium a mammal channels c sclerotium x channels, unspecified t pedotubules (unspecified) explain in descriptive

REFERENCES --- page 30 ---

REFERENCES

Soil description and coding

- Day (ed), 1983; The Canada Soil Information System (CanSIS). Manual for describing soils in the field, 1982. Revised edition. Research Branch, Agriculture Canada, Ottawa.
- Doorenbos, J. and Pruitt, W.O., 1975; Guidelines for Predicting Crop Water Requirements. FAO, Rome.
- FAO, 1977; Guidelines for Soil Profile Description. 2nd edition. FAO, Rome.
- FAO, 1986; Guidelines for the coding of soil data (first draft). Proposals for an International Soil Data Bank. Reprint 1977. FAO, Rome.
- FAO/UNESCO, 1974; Soil map of the world. Volume 1: legend. Unesco, Paris.
- McDonald, R.C., Isbell, R.F. et al., 1984; Australian Soil and Land Survey Field Handbook, Inkata Press, Melbourne.
- Parker, S.P.(ed.), 1984; McGraw-Hill Dictionary of Earth Sciences. McGraw-Hill Book Company, New York.
- Spaargaren, O. 1980; Guidelines for ISM soil profile description. ISM, Wageningen.
- Trewartha, G.T., 1968; An Introduction to Climate, McGraw-Hill Book Company, New York
- USDA, 1951; Soil survey manual. SCS, Washington.
- USDA, 1981; Soil survey manual: revised chapter 4. SCS, Washington.
- USDA/SCS, 1975; Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. SCS, Washington.
- USDA/SCS, 1979; Pedon coding system for the national cooperative soil survey. SCS, Washington.

APPENDIX A. Glossary

Parent material

Colluvium: Loose, incoherent deposits that are replaced principally by gravity and accumulated at the foot of slopes or cliffs.

Slope wash: Soil and rock material that has been transported down a slope predominantly by unchanneled running water (sheet erosion).

Glacial outwash: Sand and gravel transported away from a glacier by streams of melting water and either deposited as a floodplain along a pre-existing valley bottom or broadcast over a pre-existing plain in a form similar to an alluvial fan.

Glacial drift: All stratified deposits predominantly of glacial origin made in bodies of glacial melting water or in the sea.

Glacial till: Unsorted and unstratified drift consisting of a heterogeneous mixture of clay, sand, gravel and boulders which is deposited by and underneath a glacier. Also known as boulder clay, till, ice-laid drift.

Parent rock

Arkosic sandstone: A sandstone in which much feldspar is present, ranging from products of granular desintegration of granite to partly sorted riverlaid or even marine deposits.

Graywacke: An argillaceous sandstone characterized by an abundance of unstable minerals and rock fragments and a fine grained clay matrix binding the larger particles.

 $\textbf{Ash: Unconsolidated pyroclasts, grainsize} \, < \, 2 mm. \\$

Lapilli: Unconsolidated pyroclasts, grainsize 2 - 64 mm.

Volcanic bombs: Unconsolidated pyroclasts, grainsize > 64 mm.

Tuff: Consolidated equivalent of ash.

Volcanic breccia: Consolidated rock composed predominantly of angular volcanic particles over 2 mm.

Pumice: White or pale grey to brown highly vesicular volcanic rock, silicic to mafic glass foam which will commonly float on water.

Scoria: Usely of mafic composition, highly inflated juvenile fragments, of volcanic origin having a much higher density than pumice (they readily sink in water).

Landform

Inselberg: A large steep-sided residual hill, knob, or mountain, generally
rocky and bare, rising abrubtly from an extensive, nearly lowland
erosion surface in arid or semiarid regions.

Badlands: Extremely rough, high, narrowly and steeply gullied topography in arid or semiarid areas that are horizontally bedded and have dry, loose soil.

Pediment: A piedmont surface formed from a combination of processes which are mainly erosional; the surface is chiefly bare rock but may have a veneer of alluvium or gravel.

Pediplain: A rock-cut erosion surface formed by the coalescence of two or more pediments.

Peneplain: Landsurface of low elevation and slight relief produced in the late stages of denudation of a landmass.

APPENDIX --- page 32 ---

Stagnant alluvial plain: Alluvial plain on which erosion and aggradation by chanelled and over-bank stream flow is barely active or inactive because of reduced water supply, without apparent incision or channel enlargement that would lower the level of stream action.

Playa: A low, essentially flat part of a basin or other undrained area in an arid region.

Kame: Hill composed of sorted coarse water-laid glacial drift, largely sand and gravel, built into an impounded water body within stagnant ice or against the margin of an ice sheet.

Hydrology

Perched water table: The water table of a saturated layer of soil which is separated from an underlying saturated layer by an unsaturated layer (vadose water)

Inclusions

Pedode: A spheroidal, discrete glaebule with a hollow interior, often with a drusy lining of crystals like that of a geode.

APPENDIX B 1.Country codes

A EC	A ECHANTERAN	CCA	CHATEMALA	PY	DADACIIAV
A T	AFGHANISTAN	GCA	GUATEMALA	r i	PARAQUAY
AL	ALBANIA	GBG	GUERNS EY GUYANA	PE	PERU
GBA	ALDERNEY	BRG	GUYANA	PHI	PHILIPPINES
DZ	ALGERIA	GUY	GUYANA(FRENCH) HAITI	PL	POLAND
AND	ANDORRA	RH	HAITI	PR	PORTO RICO
AN	ANGOLA	НО	HONDURAS	P	PORTUGAL
RA	ARGENTINA	HK	HONG KONG HUNGARY ICELAND	R	RUMENIA
AUS	AUSTRALIA	Н	HUNGARY		RWANDA
A	ΔΙΙζΤΡΤΔ	IS	ICELAND	CNB	SABAH, LABUAN
BS	ALBANIA ALDERNEY ALGERIA ANDORRA ANGOLA ARGENTINA AUSTRALIA AUSTRIA BAHAMAS RAHDEIN	IND	INDIA	RSM	
DO	DAHAHAS		INDIA INDONESIA		
DIM	DARKEIN	INS		SK	SARAWAK
BD	BANGLADESH	IR	IRAN	AS	SAUDI ARABIA
BDS	BARBADOS		IRAQ	SN	SENEGAL
В	BELGIUM	IRL	IRELAND	SY	SEYCHELLES
BH	BELIZE BENIN BERMUDA	ĠВМ	ISLE OF MAN	WAL	SIERRA LEONE
RPB	BENIN	IL	ISRAEL	SGP	SINGAPORE
BM	BERMUDA	I	ITALY	SP	SOMALIA
BOL	BOLIVIA	CI	IVORY COAST	ZA	SOUTH AFRICA
RB	BOTSWANA	JA	JAMAICA	ROK	
BRA				ADN	SOUTH YEMEN
	BRAZIL BRUNEI	OD T	IEDORY		SOVIET UNION
BRU	BRUNEI	GBJ		SU	
BG	BULGARIA			E	SPAIN
BKF	BURKINA FASO BURMA	K	KAMPUCHEA		SRI LANKA
BUR	BURMA	EAK	KENYA	WV	ST.VINCENT
RU	BURUNDI	KWT	KUWAIT	\mathtt{WL}	ST.LUCIA
CAM	CAMEROON	LAO	LAOS LESOTHO	SUD	SUDAN
CDN	CANADA	LS	LESOTHO	SME	SURINAM
RCA			LEBANON	SD	SWAZILAND
RCH	CHILE	LB	LIBERIA		SWEDEN
CHA	CHINA PEOPLES REP.				SWITZERLAND
CO	COLOMBIA				
RCB					TAIWAN
CR		DM .	MAIACACV		
	COSTA RICA		MALAGASY MALAWI	CWI	TANZANIA
C	CUBA	MW	MALAWI	T	THAILAND
CY	CYPRUS	MAL		TG	TOGO
CS	CZECHOSLOVAKIA		MALI	IT	TRINIDAD & TOBAGO
DK	DENMARK	M	MALTA	TN	TUNESIA
WD	DOMINICA	MA	MAROCCO	TR	TURKEY
DOM	DOMINICAN REPUBLIC	RIM	MAURETANIA	EAU	UGANDA
EC	ECUADOR	MS	MAURITIUS	GB	UNITED KINGDOM
ET	EGYPT	MEX	MEXICO	USA	UNITED STATES
ES	EL SALVADOR	MOC	MOZAMBIQUE	UY	URUGUAY
ETH		MC	MONACO	ΥV	VENEZUELA
FR	FAROER	SWA		VN	VIETNAM
D	FED. REP. OF GERMANY	NL	NETHERLANDS	WS	WEST SAMOA
FJI		NA	NETHERLANDS ANTILLES	YAR	
SF	FINLAND	NZ	NEW ZEALAND	YU	YUGOSLAVIA
5r F	FRANCE				
		NIC	NIGARAGUA	ZRE	ZAIRE
	GABON	RN	NIGER	Z	ZAMBIA
WAG	GAMBIA	WAN		EAZ	
DDR		KO	NORTH KOREA	ZW	ZIMBABWE
GH	GHANA	N	NORWAY		
GBZ	GIBRALTAR	OMA			
GR	GREECE	PAK	PAKISTAN	GMC	GLINKA MEMORIAL
GRO	GREENLAND (DENMARK)	PA			COLLECTION (USSR)
WG	GRENADA	PNG	PAPUA NEW GUINEA		

APPENDIX B2. FAO/UNESCO classification codes

Α	ACRISOLS	I	LITHOSOL	R	REGOSOLS
Af		Ī	lithosol	Rc	
Ag		_		Rd	0
Ah		J	FLUVISOLS	Re	J G
Ao	orthic acrisol	Jс		Rx	0
Аp		Jd		ICA	geric regusur
	-	Je	,	S	SOLONETZ
В	CAMBISOLS	Jt		Sg	
Вс	chromic cambisol			Sm	- •
Bd	dystric cambisol	K	KASTANOZEM	So	
Ве		Kh		50	orenic solonecz
Bf	ferralic cambisol	Kk		T	ANDOSOLS
Bg	gleyic cambisol	K1	luvic kastanozem	Th	
Bh				Tm	
Bk	calcic cambisol	L	LUVISOLS	To	
Bv	vertic cambisol	La		Tv	
Bx	gelic cambisol	Lc	chromic luvisol		110110 and0501
		Lf		U	RANKERS
C	CHERNOZEMS	Lg	gleyic luvisol	Ü	ranker
Cg	glossic chernozem	Lk		•	
Ch		Lo		V	VERTISOLS
Ck	calcic chernozem	Lp		Vc	chromic vertisol
C1	luvic chernozem	Lv	vertic luvisol	۷p	pellic vertisol
				٠, ٢	pozite vereisor
D	PODZOLUVISOLS	M	GREYZEMS	W	PLANOSOLS
Dd	dystric podzoluvisol	Mg	gleyic greyzem	Wd	dystric planosol
De	eutric podzoluvisol	Mo	orthic greyzem	We	eutric planosol
Dg	gleyic podzoluvisol		3 3 3	Wh	humic planosol
		N	NITOSOLS	Wm	mollic planosol
E	RENDZINAS	Nd	dystric nitosol	Ws	solodic planosol
Ε	rendzina	Ne	eutric nitosol	Wx	gelic planosol
		Nh	humic nitosol		8-10 planesel
F	FERRALSOLS			Х	XEROSOLS
Fa	acric ferralsol	0	HISTOSOLS	Xh	haplic xerosol
Fh	humic ferralsol	0d	dystric histosol	Xk	calcic xerosol
Fo	orthic ferralsol	0e	eutric histosol	X1	luvic xerosol
Fp	plinthic ferralsol	0x	gelic histosol	Хy	gypsic xerosol
Fr	rhodic ferralsol)	gypoic acrosor
Fx	xanthic ferralsol	P	PODZOLS	¥	YERMOSOLS
		Pf	ferric podzol	Yh	haplic yermosol
G	GLEYSOLS	Pg	gleyic podzol	Yk	calcic yermosol
Gc	calcaric gleysol	Ph	humic podzol	Y1	luvic yermosol
Gd	dystric gleysol	P1	leptic podzol	Yt	takyric yermosol
Ge	eutric gleysol	Po	orthic podzol	Yy	gypsic yermosol
Gh	humic gleysol	Pp	placic podzol	,	851 9
Gm	mollic gleysol		· ·	Z	SOLONCHAKS
Gp	plinthic gleysol	Q	ARENOSOLS	Zg	gleyic solonchak
Gx	gelic gleysol	Qa	albic arenosol	Zm	mollic solonchak
		Qc	cambic arenosol	Zo	orthic solonchak
H	PHAEOZEM	Qf	ferralic arenosol	Zt	takyric solonchak
Нc	calcaric phaeozem	Q1	luvic arenosol		,
Hg	gleyic phaeozem				
Hh	haplic phaeozem				
H1	luvic phaeozem				

APPENDIX B3. Soil Taxonomy (USDA/SCS) classification codes. Orders, suborders and great groups.

а	ALFISOL	dob	paleorthid	heo	sulfohemist
	aqualf	dos	salorthid	het	tropohemist
aq	-	aos	Salorthid	ha.	_
aqw	albaqualf	_	PAPET COT	_	saprist
aqd	duraqualf	e	ENTISOL	har	borosaprist
aqf	fragiaqualf	eq	aquent	hac	cryosaprist
aqg	glossaqualf	eqc	cryaquent	ham	medisaprist
aqn	natraqualf	eqv	fluvaquent	hat	troposaprist
aqo	ochraqualf	eqa	haplaquent	_	
aql	plinthaqualf	eqw	hydraquent	i	INCEPTISOL
aqt	tropaqualf	eqs	psammaquent	in	andept
aqm	umbraqualf	eqi	sulfaquent	inc	cryandept
ab	boralf	eqt	tropaquent	ind	durandept
abo	cryoboralf	er	arent	iny	dystrandept
abe	eutroboralf	er	arent	ine	eutrandept
abf	fragiboralf	ev	fluvent	inw	hydrandept
abg	glossoboralf	evc	cryofluvent	inp	placandept
abn	natriboralf	evp	torrifluvent	inv	vitrandept
abb	paleboralf	evt	tropofluvent	iq	aquept
ad	udalf	evd	udifluvent	iqn	andaquept
adc	agrudalf	evu	ustifluvent	iqc	cryaquept
adi	ferrudalf	evx	xerofluvent	iqf	fragiaquept
adf	fragiudalf	eo	orthent	iqx	halaquept
agf	fraglossudalf	eoc	cryorthent	iqa	haplaquept
adg	glossudalf	eop	torriorthent	iqh	humaquept
ada	hapludalf	eot	troporthent	iqp	placaquept
adn	natrudalf	eod	udorthent	iql	plinthaquept
adb	paleudalf	eou	ustorthent	iqs	sulfaquept
adt	tropudalf	eox	xerorthent	iqt	tropaquept
au	ustalf	es	psamment	io	ochrept
aud	durustalf	esc	cryopsamment	ioc	cryochrept
aua	haplustalf	esz	quartzipsamment	iod	durochrept
aun	natrustalf	esp	torripsamment	ioy	dystrochrept
aub	paleustalf	est	tropopsamment	ioe	eutrochrept
aul	plinthustalf	esd	udipsamment	iof	fragiochrept
aur	rhodustalf	esu	ustipsamment	iou	ustochrept
ax	xeralf	esx	xeropsamment	iox	xerochrept
axd	durixeralf		_	ig	plaggept
axa	haploxeralf	h	HISTOSOL	ig	plaggept
axn	natrixeralf	hi	fibrist	it	tropept
axb	palexeralf	hib	borofibrist	ity	dystropept
axl	plinthoxeralf	hic	cryofibrist	ite	eutropept
axr	rhodoxeralf	hil	luvifibrist	ith	humitropept
		him	medifibrist	its	sombritropept
d	ARIDISOL	his	sphagnofibrist	itu	ustropept
dr	argid	hit	tropofibrist	im	umbrept
drd	durargid	hl	folist	imc	cryumbrept
dra	haplargid	hlb	borofolist	imf	fragiumbrept
drj	nadurargid	hlc	cryofolist	ima	haplumbrept
drn	natrargid	hlt	tropofolist	imx	xerumbrept
drb	paleargid	he	hemist		•
do	orthid	heb	borohemist	m	MOLLISOL
dok	calciorthid	hec	cryohemist	mw	alboll
dom	camborthid	hel	luvihemist	mwr	argialboll
dod	durorthid	hem	medihemist	mwn	natralboll
dog	gypsiorthid	hei	sulfihemist	mq	aquoll
•				=	_

mqr	argiaquoll	oh	h		IV MT co.
mqk	calciaquoll	ohk	h umox acrohumox	u	ULTISOL
mqc	cryaquoll			uq	aquult
mqd	duraquoll	ohg	gibbsihumox	uqw	albaquult
mqa	haplaquoll	oha	haplohumox	uqf	fragiaquult
		ohs	sombrihumox	uqo	ochraquult
mqn mb	natraquoll	00	orthox	uqb	paleaquult
	boroll	ook	acrorthox	uq1	plinthaquult
mbr	argiboroll	ooe	eutrorthox	uqt	tropaquult
mbk	calciboroll	oog	gibbsiorthox	uqm	umbraquult
mbc	cryoboroll	ooa	haplorthox	uh	humult
mba	haploboroll	oos	sombriorthox	uha	haplohumult
mbn	natriboroll	oom	umbriorthox	uhb	palehumult
mbb	paleboroll	op	torrox	uhl	plinthohumult
mbv	vermiboroll	op	torrox	uhs	sombrihumult
mr	rendoll	ou	ustox	uht	tropohumult
mr	rendoll	ouk	acrustox	ud	udult
md	udoll	oue	eutrustox	udf	fragiudult
mdr	argiudoll	oua	haplustox	uda	hapludult
mda	hapludoll	ous	sombriustox	udb	paleudult
mdb	paleudoll			udl	plinthudult
mdv	vermudoll	s	SPODOSOL	udr	rhodudult
mu	ustoll	sq	aquod	udt	tropudult
mur	argiustoll	sqc	cryaquod	uu	ustult
muk	calciustoll	sqd	duraquod	uua	haplustult
mud	durustoll	sqf	fragiaquod	uub	paleustult
mua	haplustoll	sqa	haplaquod	uul	plinthustult
mun	natrustoll	sqp	placaquod	uur	rhodustult
mub	paleustoll	sqs	sideraquod	ux	xerult
muv	vermustoll	sqt	tropaquod	uxa	haploxerult
mx	xeroll	si	ferrod	uxb	palexerult
mxr	argixeroll	si	ferrod		Faranorare
mxk	calcixeroll	sh	humod	v	VERTISOL
mxd	durixeroll	shc	cryohumod	vp	torrert
mxa	haploxeroll	shf	fragihumod	νp	torrert
mxn	natrixeroll	sha	haplohumod	vd	udert
mxb	palexeroll	shp	placohumod	vdr	chromudert
		sht	tropohumod	vdl	pelludert
0	OXISOL	so	orthod	vu	ustert
оq	aquox	soc	cryorthod	vur	chromustert
oqg	gibbsiaquox	sof	fragiorthod	vul	pellustert
opo	ochraquox	soa	haplorthod	VX	xerert
oql	plinthaquox	sop	placorthod	vxr	chromoxerert
oqm	umbraquox	sot	troporthod	vxl	pelloxerert
				****	POTTOVOTOTO

Subgroup prefixes

AB	abruptic	AE1Ø	aeric umbric	
ABØ4	abruptic aridic	AE12	aeric xeric	
ABØ8	abruptic cryic	AL	albaguic	
AB1Ø	abruptic haplic	ALØ2	albaquultic	
AB14	abruptic udic	ALØ4	albic	
AB16	abruptic xerollic	ALØ8	albic glossic	
ΑE	aeric	AL1Ø	alfic	
AEØ3	aeric arenic	AL12	alfic arenic	
AEØ5	aeric grossarenic	AL13	alfic andeptic	
AEØ6	aeric mollic	AL16	alfic lithic	
AEØ8	aeric humic	AN	andic	
AEØ9	aeric tropic	ANØ1	andeptic	
•	•	111791	andebite	

anø3	andaquic	CUØ2	cumulic udic
anø6	andic dystric	CUØ4	cumulic ultic
AN11	andeptic glossoboric	DU	durargidic
AN22	andic ustic	DUØ2	duric
AN24	andaqueptic	DUØ8	durixerollic
		•	
AN3Ø	anthropic	DU1Ø	durixerollic lithic
AQ	aqualfic	DU11	durochreptic
AQØ2	aquentic	DU12	durorthidic
AQØ4	aqueptic	DU14	durorthidic xeric
AQØ6	aquic	DYØ2	dystric
AQØ8	aquic arenic	DYØ3	dystric entic
AQ14	aquic duric	DYØ4	dystric fluventic
AQ16	aquic durorthidic	DYØ6	dystric lithic
AQ18	aquic dystric	DYØ8	dystropeptic
AQ24	aquic haplic	EN	entic
AQ26	aquic lithic	ENØ2	entic lithic
AQ31	aquic psammentic	ENØ6	entic ultic
AQ34	aquollic	EP	epiaquic
AQ36	aquultic		
-	-	EP1Ø	epiaquic orthoxic
AR	arenic	EU	eutric
ARØ2	arenic aridic	EUØ2	eutrochreptic
ARØ3	arenic orthoxic	EUØ4	eutropeptic
ARØ4	arenic plinthaquic	FE	ferrudalfic
arø6	arenic plinthic	FI	fibric
arø8	arenic rhodic	F1Ø2	fibric terric
AR1Ø	arenic ultic	FLØ2	fluvaquentic
AR14	arenic umbric	FLØ6	fluventic
AR16	arenic ustalfic	FL12	fluventic umbric
AR18	arenic ustollic	FR1Ø	fragiaquic
AR22	argiaquic	FR18	fragic
AR24	argiaquic xeric	GLØ2	glossaquic
AR26	argic	GLØ4	glossic
AR28	argic lithic	GL1Ø	glossic udic
AR3Ø	argic pachic	GL12	glossic ustollic
AR32	argic vertic	GL12 GL14	glossoboralfic
AR34	aridic	GL14 GL16	glossoboric
AR36	aridic calcic		•
		GR GR G1	grossarenic
AR42	aridic duric	GRØ1	grossarenic entic
AR5Ø	aridic pachic	GRØ4	grossarenic plinthic
AR52	aridic petrocalcic	HA	haplaquodic
BO	boralfic	HAØ1	haplaquic
BOØ2	boralfic lithic	HAØ2	haplic
B0Ø4	boralfic udic	HAØ5	haplohumic
BOØ6	borollic	HAØ7	haploxerollic
B0Ø8	borollic glossic	HAØ9	hapludic
BO1Ø	borollic lithic	HA12	hapludollic
BO12	borollic vertic	HA16	haplustollic
CA	calcic	HE	hemic
CAØ4	calcic pachic	HEØ2	hemic terric
CAØ6	calciorthidic	HI	histic
CA1Ø	calcixerollic	H1Ø2	histic lithic
CA2Ø	cambic	HIØ6	histic pergelic
СН	chromic	HU	humic
CHØ6	chromudic	HUØ2	humic lithic
CR	cryic	HUØ5	humic pergelic
CR1Ø	cryic lithic	HUØ6	humoxic
CR14	cryic pachic	HU1Ø	
CU	cumulic		humaqueptic
00	Cumulic	HY	hydric

APPENDIX --- page 38 ---

HYØ2	hydric lithic	RU17	ruptic-ultic
LE	leptic	RU19	ruptic-vertic
LI	limnic	SA	salorthidic
LIØ2	lithic	SAØ2	sapric
LIØ4	lithic mollic	SAØ4	sapric terric
LIØ6	lithic ruptic-alfic	SI	sideric
L IØ 7	lithic ruptic-argic	S0Ø4	sombrihumic
LIØ8	lithic ruptic-entic xerollic	SP	sphagnic
LIØ9	lithic ruptic-entic	SPØ2	sphagnic terric
LI1Ø	lithic udic	SPØ4	spodic
LI11	lithic ruptic-xerorthentic	SU	sulfic
LI12	lithic ultic	TE	terric
LI13	lithic ruptic-ultic	THØ4	thapto-histic
LI14	lithic umbric	THØ6	thapto-histic tropic
LI15	lithic ruptic-xerochreptic	TO	torrertic
LI16	lithic ustic	TOØ2	torrifluventic
LI18	lithic ustollic	T0Ø4	torriorthentic
LI2Ø	lithic vertic	TOØ6	torripsammentic
LI22	lithic xeric	T01Ø	torroxic
LI24	lithic xerollic	TR	tropaquodic
MO	mollic	TRØ2	tropeptic
NAØ6	natric	TRØ4	tropic
OC	ochreptic	AA	typic
OR	orthidic	UD	udertic
ORØ1	orthic	UDØ1	udalfic
ORØ2	orthoxic	UDØ2	udic
OX	oxic	UDØ3	udollic
PA	pachic	UDØ5	udorthentic
PAØ2	pachic udic	UD1Ø	udoxic
PAØ4	pachic ultic	UL	ultic
PAØ6	paleorthidic	UM	umbreptic
PAØ8	paleustollic	UMØ2	umbric
PA1Ø	palexerollic	US	ustalfic
PA2Ø	paralithic vertic	USØ2	ustertic
PE	pergelic	USØ4	ustic
PEØ1	pergelic ruptic-histic	USØ6	ustochreptic
PEØ2	pergelic sideric	USØ8	ustollic
PEØ4	petrocalcic	US12	ustoxic
PEØ6	petrocalcic ustalfic	VE	vermic
PEØ8	petrocalcic ustollic	VEØ2	vertic
PE14	petrocalcic xerollic	XE	xeralfic
PE16	petroferric	XEØ2	xerertic
PE2Ø	petrogypsic	XEØ4	xeric
PK	placic	XEØ8	xerollic
PK1Ø	plaggeptic		
PK12	plaggic		
PL	plinthaquic		
PLØ4	plinthic		
PLØ6	plinthudic		
PS	psammaquentic		
PSØ2	psammentic		
QU	quartzipsammentic		
RE	rendollic		
RH	rhodic		
RUØ2	ruptic-alfic		
RUØ9	ruptic-lithic		
RU11	ruptic-lithic entic		
RU15	ruptic-lithic xerochreptic		

APPENDIX B4. Soil Taxonomy(USDA/SCS) classification codes. Texture and mineralogy.

Text	ure		
ØØ5		014	medial over clayey
ØØ7	•		medial over fragmental
ØØ8		Ø18	
Ø13	· · · · · · · · · · · · · · · · · · ·	Ø2Ø	
øø9	•	Ø22	medial over sandy or sandy-
ØØ3		y Z Z	skeletal
ØØ6		Ø24	
Ø17		Ø11	•
Ø15		Ø62	sandy
ØØ4	•	Ø63	•
ууч	skeletal	Ø66	sandy or sandy-skeletal
114		•	3 3
	3 3	Ø64	3
122	3 3	Ø44	5
116	3 3	Ø47	3
124	3	Ø46	sandy-skeletal over loamy
120	• •	Ø26	
118		Ø28	•
Ø56	• •	Ø34	•
Ø58	• •	Ø32	
Ø8Ø	<u> </u>	ø3ø	-
Ø86	, , , , , , , , , , , , , , , , , , ,		skeletal
Ø82			thixotropic-skeletal
Ø84		134	very fine
	skeletal		
Ø88	•	Mine	ralogy
Ø94	coarse-silty over clayey		
Ø92	, ,	Ø 4	calcareous
·	skeletal	Ø5	calcareous carbonatic
126	skeletal fine	ø5 ø9	
126 115	skeletal fine fine clayey	ø5 ø9 ø7	carbonatic
126 115 Ø96	skeletal fine fine clayey fine-loamy	Ø5 Ø9 Ø7 Ø8	carbonatic chloritic clastic coprogenous
126 115 Ø96 1Ø2	skeletal fine fine clayey fine-loamy fine-loamy over clayey	Ø5 Ø9 Ø7 Ø8 1Ø	carbonatic chloritic clastic coprogenous diatomaceous
126 115 Ø96 1Ø2 Ø98	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental	Ø5 Ø9 Ø7 Ø8 1Ø 12	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic
126 115 Ø96 1Ø2	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy	Ø5 Ø9 Ø7 Ø8 1Ø 12	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic
126 115 Ø96 1Ø2 Ø98 1ØØ	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal	95 99 97 98 19 12 14 18	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic
126 115 Ø96 1Ø2 Ø98 1ØØ	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty	95 99 97 98 19 12 14 18 29	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic
126 115 Ø96 1Ø2 Ø98 1ØØ 1Ø6 112	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey	95 99 97 98 19 12 14 18 29 22	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic
126 115 Ø96 1Ø2 Ø98 1ØØ 1Ø6 112 1Ø8	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental	95 99 97 98 19 12 14 18 29 22 24	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic
126 115 Ø96 1Ø2 Ø98 1ØØ 1Ø6 112	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental fine silty over sandy or sandy-	95 99 97 98 19 12 14 18 29 22 24 26	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic illitic
126 115 Ø96 1Ø2 Ø98 1ØØ 1Ø6 112 1Ø8 11Ø	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental fine silty over sandy or sandy- skeletal	95 99 97 98 19 12 14 18 29 22 24 26 27	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic illitic illitic (calcareous)
126 115 Ø96 1Ø2 Ø98 1ØØ 1Ø6 112 1Ø8 11Ø	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental fine silty over sandy or sandy- skeletal fragmental	95 99 97 98 19 12 14 18 29 22 24 26 27 28	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic illitic illitic (calcareous) kaolinitic
126 115 Ø96 1Ø2 Ø98 1ØØ 1Ø6 112 1Ø8 11Ø	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental fine silty over sandy or sandy- skeletal fragmental fragmental gravelly	95 99 97 98 19 12 14 18 29 22 24 26 27 28 39	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic illitic illitic (calcareous) kaolinitic marly
126 115 996 192 998 199 196 112 198 119 936 159 968	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental fine silty over sandy or sandy- skeletal fragmental fragmental gravelly loamy	95 99 97 98 19 12 14 18 29 22 24 26 27 28 39 32	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic illitic illitic illitic (calcareous) kaolinitic marly micaceous
126 115 996 192 998 199 196 112 198 119 936 159 968 972	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental fine silty over sandy or sandy- skeletal fragmental gravelly loamy loamy over sandy or sandy-skeletal	95 99 97 98 19 12 14 18 29 22 24 26 27 28 39 32 34	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic illitic illitic (calcareous) kaolinitic marly micaceous mixed
126 115 996 192 998 199 196 112 198 119 936 159 968 972 959	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental fine silty over sandy or sandy- skeletal fragmental gravelly loamy loamy over sandy or sandy-skeletal loamy skeletal	95 99 97 98 19 12 14 18 29 22 24 26 27 28 39 32 34 35	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic illitic illitic (calcareous) kaolinitic marly micaceous mixed mixed (calcareous)
126 115 996 192 998 199 196 112 198 119 936 159 968 972 959 954	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental fine silty over sandy or sandy- skeletal fragmental gravelly loamy loamy over sandy or sandy-skeletal loamy skeletal loamy-skeletal over clayey	95 99 97 98 19 12 14 18 29 22 24 26 27 28 39 32 34 35 37	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic illitic illitic (calcareous) kaolinitic marly micaceous mixed mixed (calcareous) montmorillonitic
126 115 Ø96 1Ø2 Ø98 1ØØ 1Ø6 112 1Ø8 11Ø Ø36 15Ø Ø68 Ø72 Ø5Ø Ø54 Ø51	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental fine silty over sandy or sandy- skeletal fragmental gravelly loamy loamy over sandy or sandy-skeletal loamy skeletal loamy-skeletal over clayey loamy-skeletal over fragmental	95 99 97 98 19 12 14 18 29 22 24 26 27 28 39 32 34 35 37 38	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic illitic illitic (calcareous) kaolinitic marly micaceous mixed mixed (calcareous) montmorillonitic(calcareous)
126 115 996 192 998 199 196 112 198 119 936 159 968 972 959 954 951 952	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental fine silty over sandy or sandy- skeletal fragmental gravelly loamy loamy over sandy or sandy-skeletal loamy-skeletal over clayey loamy-skeletal over fragmental loamy-skeletal over sandy	95 99 97 98 19 12 14 18 29 22 24 26 27 28 39 32 34 35 37 38 49	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic illitic illitic (calcareous) kaolinitic marly micaceous mixed mixed (calcareous) montmorillonitic montmorillonitic(calcareous) oxidic
126 115 996 192 998 199 196 112 198 119 936 159 968 972 959 954 951 952 979	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental fine silty over sandy or sandy- skeletal fragmental gravelly loamy loamy over sandy or sandy-skeletal loamy-skeletal over clayey loamy-skeletal over fragmental loamy-skeletal over sandy loamy sandy	95 99 97 98 19 12 14 18 29 22 24 26 27 28 39 32 34 35 37 38 49 42	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic illitic illitic (calcareous) kaolinitic marly micaceous mixed mixed (calcareous) montmorillonitic contmorillonitic(calcareous) oxidic sepiolitic
126 115 996 192 998 199 196 112 198 119 936 159 968 972 959 954 951 952 979 965	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental fine silty over sandy or sandy- skeletal fragmental gravelly loamy loamy over sandy or sandy-skeletal loamy-skeletal loamy-skeletal over clayey loamy-skeletal over fragmental loamy-skeletal over sandy loamy sandy loamy to sandy	95 99 97 98 19 12 14 18 29 22 24 26 27 28 39 32 34 35 37 38 49 42 44	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic illitic illitic (calcareous) kaolinitic marly micaceous mixed mixed (calcareous) montmorillonitic montmorillonitic sepiolitic serpentinitic
126 115 996 192 998 199 196 112 198 119 936 159 968 972 959 954 951 952 979 965 919	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental fine silty over sandy or sandy- skeletal fragmental gravelly loamy loamy over sandy or sandy-skeletal loamy-skeletal over clayey loamy-skeletal over fragmental loamy-skeletal over fragmental loamy-skeletal over sandy loamy sandy loamy to sandy medial	95 99 97 98 12 14 18 22 24 26 27 28 32 33 35 37 38 42 44 46	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic illitic illitic (calcareous) kaolinitic marly micaceous mixed mixed (calcareous) montmorillonitic montmorillonitic sepiolitic serpentinitic siliceous
126 115 996 192 998 199 196 112 198 119 936 159 968 972 959 954 951 952 979 965	skeletal fine fine clayey fine-loamy fine-loamy over clayey fine-loamy over fragmental fine-loamy over sandy or sandy- skeletal fine-silty fine-silty over clayey fine-silty over fragmental fine silty over sandy or sandy- skeletal fragmental gravelly loamy loamy over sandy or sandy-skeletal loamy-skeletal loamy-skeletal over clayey loamy-skeletal over fragmental loamy-skeletal over sandy loamy sandy loamy to sandy	95 99 97 98 19 12 14 18 29 22 24 26 27 28 39 32 34 35 37 38 49 42 44	carbonatic chloritic clastic coprogenous diatomaceous ferrihumic ferritic gibbsitic glauconitic gypsic halloysitic illitic illitic (calcareous) kaolinitic marly micaceous mixed mixed (calcareous) montmorillonitic montmorillonitic sepiolitic serpentinitic

LATITUDE :	° ' ' " LONGITUDE		ALTITUDE .
FAO:	SOIL UNIT	<u>SIFICATION</u> FINAL CLASS,(Y/N)	⊥⊥ PHASE
USDA/SCS:	GREAT GROUP , ,		SUBGROUP
TEXTURE 1,,	MINERALOGY .	STR ,	SMR
DIAGNOSTIC HORI	ZONS I L.	II <u> , </u>	III
(OTHER) DIAGNOS	TIC CRITERIA	I <u> </u>	II
LOCAL CLASS.:	<u></u>		· · · · · · · · · · · · · · · · · · ·
	<u>c</u>	<u>LIMATE</u>	Köppen 1
STATION	 		ALTITUDE
LATITUDE ; ,	°, ', " LONGITUDE		DISTANCE _
DIRECTION	_1		RELEVANCE
F L.A			
	<u>PARENT MATERI</u>	AL / PARENT ROCK	

GEOMORPHOLOGY ISRIC CODE , , ; ,	
REGIONAL LANDFORM	TOPOGRAPHY 1
PHYS.UNIT , , , , , , , , , , , , , , , , , ,	
POSITION OF SITE	
SLOPE GRADIENT (%) FORM	ASPECT , ,
MICRORELIEF, SURFACE CHARACTERIST	TICS, ALKALI/SALT
KIND PATTERN	
ROCKOUTCROPS , STONINESS , SIZE	E (cm) SHAPE
CRACKING SLAKING/CRUSTING	ALKALI SALT
HYDROLOGY	
WATER TABLE: KIND DEPTH (cm) 1	FLUCTUATION (cm) FROM , , TO , ,
SLOW PERMEABLE LAYER: FROM TO	(cm) PERMEABILITY
FLOODING: FREQUENCY NATURE RUN OFF	DRAINAGE CLASS
MOISTURE CONDITIONS PROFILE (cm): DRY MOIST WET	FROM TO TO
	ATION SLOPE STABILITY
LAND USE AND VEGETAL LUT CROP I	TION RRIGATION ROTATION .
IMPROVEMENTS VEGETATION TYPE	→ STATUS →
REMARKS: , , , , , , , , , , , , , , , , , ,	<u> </u>
	
GENERAL REMARKS ON SITE AND PROFILE: , , , ,	
<u> </u>	
	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
256 CHARACTE	RS + BLANKS
PHOTOGRAPHS / SLIDES: SUBJECT: LA SU PR	PD VE CR LU ER XX

PROFILE CHARACTER HORIZON NUMBER	PISTICS ↓ ↓ ↓	↓ _↓	ISRIC CODE
DESIGNATION	 	1	
DEPTH up/low	 	 	
BOUNDARY wi/to	++ ++	11	₩ ₩
COLOUR dry moist	 	 	
TXT <2mm >2mm	 	 	
ORG. MAT. ki/de	₩ ₩	₩ ₩	
STRUCT 1/2 grade size form form 1->2	1 2 1 1 2 1 1 2 1	$\begin{array}{c cccc} 1 & & & & 2 & & & \\ 1 & & & & & 2 & & & \\ 1 & & & & & 2 & & & \\ 1 & & & & & 2 & & & \\ & & & & & & & & \\ \end{array}$	
CONSIST. dry/mo sti/pla (wet) other			
PORES 1 qu/si fo/or/co/di PORES 2 qu/si fo/or/co/di TOTAL POROSITY			
ROOTS 1 qu/si/lo 2 qu/si/lo	 	 	
CaCO ₃ ag/cl/lo	++ ++ ++	₩ ₩ ₩	
pH value/method	 	 	
MOTTLES 1/2 ab si co bo col 1 col 2	1	1	1
CUTANS q/t/k/l	₩₩₩₩	₩₩₩₩	₩ ₩ ₩ ₩
INCLUSIONS 1/2qu ty si ha sh co	1	1	1
ROCK 1/2 qu si we	1	1	1
nature 1	<u> </u>		
nature 2			
PANS k/ce/co/s	\sqcup \sqcup \sqcup	 	
BIOL.ACT. ab/ki	₩ ₩	\vdash \vdash \vdash	

PROFILE SKETCH

 \sqcup \sqcup \sqcup

International Soil Reference and Information Centre (ISRIC)

Publications - November 1988

Soil Monolith Papers

- 1. Thionic Fluvisol (Sulfic Tropaquept) Thailand, 1981
- 2. Orthic Ferralsol (Typic Haplustox) Zambia, in prep.
- 3. Placic Podzol (Placaquod) Ireland, in prep.
- 4. Humic Nitosol (Oxic Paleustalf) Kenya, in prep.
- 5. Humic Acrisol (Orthoxic Palehumult) Jamaica, 1982
- 6. Acri-Orthic Ferralsol (Haplic Acrorthox) Jamaica, 1982
- 7. Chernozem calcique (Vermustoll Typique) Romania, 1986
- 8. Ferric Luvisol (Oxic Paleustalf) Nigeria, in prep.

Technical Papers

- 1. Procedures for the collection and preservation of soil profiles, 1979
- 2. The photography of soils and associated landscapes, 1981
- 3. A new suction apparatus for mounting clay specimens on small-size porous plates for X-ray diffraction, 1979 (exhausted, superseded by TP 11)
- 4. Field extract of "Soil Taxonomy", 1980, 4th printing 1986
- 5. The flat wetlands of the world, 1982
- 6. Laboratory methods and data exchange program for soil characterization. A report on the pilot round. Part I: CEC and Texture, 1982; 3rd printing 1984
- 7. Field extract of "classification des sols", 1984
- 8. Laboratory methods and data exchange program for soil characterization. A report on the pilot round. Part II: Exchangeable bases, base saturation and pH, 1984
- 9. Procedures for soil analysis, 1986; 2nd edition, 1987
- 10. Aspects of the exhibition of soil monoliths and relevant information (provisional edition, 1985)
- 11. A simplified new suction apparatus for the preparation of small-size porous plate clay specimens for X-ray diffraction, 1986
- 12. Problem soils: their reclamation and management (copied from ILRI Publication 27, 1980, p. 43-72), 1986
- 13. Proceedings of an international workshop on the Laboratory Methods and Data Exchange Programme: 25-29 August 1986, Wageningen, the Netherlands, 1987
- 14. Guidelines for the description and coding of soil data, revised edition, 1988
- 15. ISRIC Soil Information System user and technical manuals, with computer programme, 1988
- 16. Comparative classification of some deep, well-drained red clay soils of Mozambique, 1987
- 17. Soil horizon designation and classification, 1988
- 18. Historical highlights of soil survey and soil classification with emphasis on the United States, 1899-1970, 1988

Soil Monographs

- 1. Podzols and podzolization in temperate regions, 1982 with wall chart: Podzols and related soils, 1983
- 2. Clay mineralogy and chemistry of Andisols and related soils from diverse climatic regions, in prep.
- 3. Ferralsols and similar soils; characteristics, classification and limitations for land use, in prep.

Wall charts

- Podzols and related soils, 67 x 97 cm, 1983 (see Soil Monograph 1)
- Soils of the World, 85 x 135 cm, 1987 (Elsevier Publ. Company, in cooperation with ISRIC, FAO and Unesco)

