

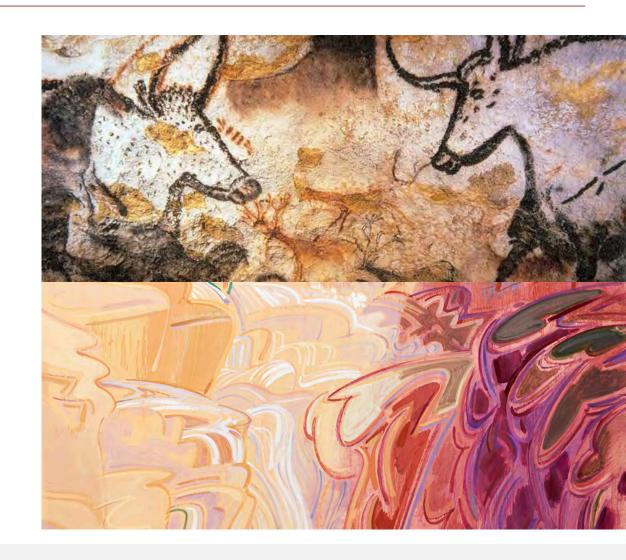
From Ochre to Oil: The Journey of Natural Pigments

Erika Henskens

5 June 2025 / Artathon / Gaia 1

Introduction

- Surgical assistant
- Project assistant
- Artist


Content presentation

- Timeline of soil pigments
- Advantages / disadvantages soil pigments
- Examples of paintings with soil pigments
- Origin of soil colors
- Other applications

History of Soil Pigments

- Up to ~10,000 BCE:
 Prehistoric times
- 3000 BCE 500 CE:
 Ancient civilizations
- ~500–1600 CE: Middle
 Ages to Renaissance
- 1600s 1900s: Modern
 Era
- 20th Century Today:
 Contemporary Use

~10.000 BC: prehistoric times

- Blombos Cave (South Africa)
- Cave Paintings (e.g., Lascaux in France, Altamira in Spain)

3000 BC - 500 AD: ancient civilization

Egyptians

Greeks & Romans

. China & India

~500–1600 AD: Middle Ages to Renaissance

~

Medieval Manuscripts

Renaissance Painters

Classical technique

1600s - 1900s: Modern Era

- Invention of painting tubes:
 - Synthetic pigments / invention of painting tubes in 1841
 - Plein air, work more freely

20th Century – Today: Contemporary Use

Natural Pigments Revival

Cultural Identity

Why the shift to synthetic paints?

- 1. Limited color range
- 2. Variability and inconsistency
- 3. Cost and accessibility
- 4. More labour-intensive preparation
- 5. Lightfastness and durability
- 6. Industrial revolution / expansion of mass production

Advantages soil pigments

- 1. Natural and non-toxic
- 2. Lightfastness (stability)
- 3. Subtle but rich tones
- 4. Wide availability and sustainability
- 5. Compatible with various binders

Examples of famous works in earth pigments

Giotto:

Lamentation

(Scrovegni Chapel, Padua)

Leonardo da Vinci: The Last Supper

Examples of famous works in earth pigments

Van Gogh:

Potatoe eaters

(Kröller Möller Museum, Otterlo)

Examples of famous works in earth pigments

Jean-Baptiste-Camille Corot:

Forest of Fontainebleau

(National Gallery of Art, Washington)

Ochre (Yellow, Red, Brown)

- Origin: worldwide
- Composition: Naturally occurring clay colored by iron oxide (hematite for red, goethite for yellow).
- Uses: paint, cement, asphalt for roads, synthetics and rubbers

Sienna (Raw and Burnt)

- Origin: Siena, Italy, found in many areas with iron-rich soils.
- Composition: Clay with iron oxide and manganese oxide.
- Historical Use: Widely used in classical and Renaissance art.

Umber (Raw and Burnt)

- Origin: Traditionally from Cyprus, later Italy and France.
- Composition: Clay containing iron and manganese oxides.
- Use: Underpainting and shadows in oil painting due to its dark tone.

Terra Rossa (Red Earth)

- Origin: Mediterranean regions
- Composition: Clay-rich soil with high iron oxide content
- Use: historically in frescoes and ceramics

Green Earth (Terre Verte)

- Origin: Italy, Bohemia, Cyprus.
- Composition: Glauconite or celadonite minerals in clay-rich soils.
- Use: Popular in Medieval and Renaissance art

Non-soil pigments

• Ultramarine : lapis lazuli

Azurite : copper carbonate mineral (Egyptian paintings)

Indigo : plant-based dye

Vermilion : mercury sulfide (toxic)

Carmine : cochineal beetles

Lead white : corroding lead in vinegar and horse manure (very toxic)

Bone black : charring animal bones

Purple : mixing color

Gold leaf

Other applications besides paint

- Architecture & Building Materials
- Ritual, Ceremonial & Cosmetic Use
- Pottery and Ceramics
- Writing and Ink
- Textiles
- Scientific and Industrial Applications

Other applications besides paint

Soil Color as an Indicator:

Soil color can reflect the organic matter content, moisture levels, and other factors that influence soil respiration. For example, darker soils often have higher organic matter content, which can indicate a greater capacity for carbon storage and respiration.

Munsell soil color charts:

Munsell Soil Color Charts is a tool that helps people describe soil color in a clear

and consistent way. Scientists, archaeologists,

farmers, and geologists use them to compare

and record soil colors when studying the land.

Each hue in soil is a fingerprint of the Earth's breathing —

red for oxidized life, gray for the absence of air, and black for richness born of decay."

— Environmental poet's paraphrase

Open discussion

Thank you for listening

