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Abstract
Predictive soil mapping, also called digital soil mapping, 
is the now-dominant means of producing soil maps to 
be used as digital layers in land resource assessment 
and land surface modelling. It has the advantage of 
consistency and has enabled the production of global 
and regional maps of soil properties at moderate (250 m) 
to fine (30 m) grid-cell resolutions. These also provide 
internal measures of their reliability, so can be used in 
sensitivity and scenario analyses. Reliability depends 
on the density of observations so, in areas where 
agricultural development projects are undertaken, their 
quality is doubtful but they do provide a good starting 
point for zoning and more detailed study.

Introduction
The increasing quantification and computerisation in 
society has resurrected soil surveying and the value of soil 
surveys. This has been made possible by three factors: 
almost magical computer power (recently Google Earth 
Engine); open databases of soil profile observations 
(especially ISRIC – World Soil Information’s World Soil 
Information Service [WoSIS]); and free availability of a 
vast store of geographic gridded coverages related to 
the factors of soil formation (Jenny, 1941), especially relief 
(the terrain from digital elevation models), organisms 
(vegetative cover from satellite imagery) and climate (eg 
WorldClim). These allow the production of soil maps 
by so-called ‘predictive soil mapping’, more popularly 
known as ‘digital soil mapping’.

Digital and predictive soil mapping
The first approaches to predictive soil mapping began 
in the 1990s and were well reviewed by Scull et al 
(2003) in Progress in Physical Geography. They chose 
the term predictive in the same sense that our German 

colleagues refer to concept maps, which in other 
contexts have been called ‘pre-maps’. The idea is that 
from ancillary information and isolated observations, 
the surveyor makes a map of the study area and, then, 
uses it to plan fieldwork to confirm, modify and update 
the map into a product to be delivered to map users. 
In the same year, McBratney et al (2003) promoted 
the now-current term ‘digital soil mapping’ (DSM) to 
emphasise the indispensable role of computation in 
this method of making soil maps and argued that all 
maps are predictive of the true state of affairs. This is 
especially true for soil maps, where only a miniscule 
fraction of the soil is examined, even at its surface, let 
alone at depth.

Is DSM a case of doing it “because we can”, or are 
there real advantages? Certainly, there are elements 
of the first – especially because it’s accessible to IT-
oriented people who have no or very limited field 
experience in traditional, landscape-based soil 
survey. A deluge of research papers compares digital 
methods in ever-finer detail (modelling methods, 
choice of covariates, dealing with under-sampled 
areas, etc). In defence of these authors, funding for 
systematic landscape-based soil survey is increasingly 
hard to come by, whereas funding is obtainable for 
point-based observations, especially for investigating 
to what degree spectroscopy can replace traditional 
laboratory analysis (eg Vågen et al, 2020). But mapping 
is then done by digital methods (eg Hengl et al, 2015).

Digital methods do have several advantages, as listed 
below.

•	 They are reproducible and objective: the same 
inputs and same model give the same output. This 
avoids the well-known issue of inconsistency among 
field soil surveyors which is only partially resolved 
by field correlation.
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•	 Most methods provide an estimate of their accuracy 
and precision, which are related to the density of 
observations both in geographic space (for spatial 
interpolation methods) and their representativeness 
in covariate space. Thus, it is clear where more point 
observations would best be placed to improve the 
map (Brus, 2019).

•	 They ignore political and soil survey borders and, so, 
avoid the patchwork appearance of maps stitched 
together from diverse surveys.

•	 They predict areas where field survey is not possible, 
using the soil–environment relations developed in 
surveyed areas – obviously such maps must be used 
with caution.

Several disadvantages of digital methods are also 
evident: first, and most notably, their theory of soil 
geography is a correlation between observations 
and environmental covariates which are supposed 
to represent the soil-forming factors. This is far less 
comprehensive than a soil-geomorphic landscape 
analysis made by an experienced surveyor; if these 
covariates do not completely represent the factors, 
unlike (dissimilar) soils will be grouped together. Some 
covariates are either non-existent or at too coarse a 
scale to be useful, notably surficial lithology. Moreover, 
the soil-forming factor time, or age of the landform, 
is hard to represent by covariates since it requires a 
geomorphic analysis and estimates of past climates. 
Second, these models can only work with the profile 
observations provided to them, which rarely encompass 
the soil-geographic space because most field sampling 
plans were not designed to support DSM; indeed, such 
plans have only recently been developed and are still 
being refined (Wadoux & Brus, 2020). Examining the 
location of available soil profiles in feature space, ie the 
multivariate space covered by the covariates, can reveal 
holes in this space, where no soil observations have 
been made. Most machine-learning methods cannot 
extrapolate into these, and even methods that can (eg 
multiple linear regression) are of dubious validity.

Soil maps in global modelling
Recent years have seen a growing demand for soil 
maps to be used in global models, most notably of 
earth surface fluxes such as the Community Land 
Model (eg the soil hydrologic property maps produced 
by Dai et al, 2019). Such maps of derived soil properties, 
related directly to soil functions, of course rely on 
maps of primary soil properties and, ideally, also on 
maps of soil classes that serve to zone pedotransfer 
models. Previous global maps such as the FAO-
UNESCO Soil Map of the World and the Harmonized 
World Soil Database (IIASA et al, 2012) include large 
areas dependent on expert judgement, and are at a 
small scale (1 : 5 million and 1 : 1 million, respectively). 

Hence the demand for a higher-resolution, fully digital 
and more objective product.

Since the first attempt to make an internationally 
acceptable soil map of the world under the auspices 
of the Food and Agriculture Organization of the 
United Nations (FAO) in the 1960s, ISRIC – World Soil 
Information has been the key institution for collecting 
and harmonising soil observations, collecting maps as 
source materials for compiled maps, and coordinating 
the development of a consistent legend that has 
evolved over the years into today’s World Reference 
Base (WRB) for Soil Resources (IUSS Working Group WRB, 
2015). ISRIC is accredited as the world data centre for 
soils by the International Council for Science. Thus, as 
the demand for globally consistent digital soil maps 
became evident, ISRIC was from the first involved in 
the GlobalSoilMap.net consortium (Arrouays et al, 
2014), but this attempt to build a global map from 
regional nodes faltered for a variety of pedo-political 
reasons, although it performed valuable work in 
standardisation (Science Committee, 2012).

SoilGrids
ISRIC then decided to see if a consistent global 
product could be produced directly. The result was 
SoilGrids1km, soon followed by SoilGrids250m, both 
under the leadership of my former PhD student 
Tomislav Hengl (Hengl et al, 2014, 2017). After Hengl 
left ISRIC to form his own environmental information 
company, EnvironmetriX (https://envirometrix.nl/), 
SoilGrids was developed into a second version (Poggio 
et al, 2021), the main digital soil mapper being Laura 
Poggio, who was recruited from the Macaulay Institute. 
This is the current flagship product. Grid cell size was 
kept at 250 m, considering the sparsity of the supporting 
point observations, especially in poorly surveyed areas, 
or those where point observations have not been 
(India), or cannot legally be (France), shared.

Figure 1 is a snapshot of the SoilGrids interactive map 
(https://soilgrids.org/). There is one map for each 
of the five physical, four chemical, and two derived 
properties and each of the six depth slices. This 
snapshot shows how country borders disappear into 
a consistent product. Figure 2 shows the prediction 
at a point. Notice the uncertainty bands around 
each prediction. A feature of many DSM methods, 
including the Quantile Random Forest method used 
in SoilGrids, is that they can provide a measure of 
uncertainty. Figure 3 shows the uncertainty of pH in 
the 0–5 cm layer in a small area south-west of Lake 
Naivasha, Kenya. The uncertainty is quantified as the 
ratio between the interquantile range (90  percent 
prediction interval width) and the median prediction. 
The pattern of uncertainty is based on the relation 
between observations and covariates. This layer can 
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be used to mask areas where predictions are too 
uncertain, and also for sensitivity analysis in models 
that use the layers.

Figure 1. SoilGrids 2.0: Average pH (×10) of the 30–60 cm depth 
slice (Source: screen shot from SoilGrids v2.0 from ISRIC – World 
Soil Information; CC-BY 4.0)

Figure 2. Predicted soil properties at a grid cell west of 
Kampala, Uganda (Source: screen shot from SoilGrids v2.0 from 
ISRIC – World Soil Information; CC-BY 4.0)

Figure 3. Uncertainty of pH prediction, south-west of Lake 
Naivasha, Kenya (Source: screen shot from SoilGrids v2.0 from 
ISRIC – World Soil Information; CC-BY 4.0)

The grids can be accessed for download in several 
ways, and are included as assets in Google Earth Engine 
(GEE). This allows the immense processing power and 
store of geographic information in GEE to be used 
along with soil properties. For example, Figure 4 
shows a colour composite from a principal component 
analysis (clay, sand, bulk density, soil organic carbon 
[SOC], pH, cation exchange capacity [CEC], coarse 
fragments × 6 depth slices) of 42 layers, performed in 
GEE, of the Naivasha area. This is an objective zoning 
and clearly shows regions with substantially different 
soil properties. These can be used in cluster analysis 
to identify zones of relatively homogeneous soils for 
stratified sampling or field survey.

Figure 4. R–G–B colour composite from principal components 
1, 2, 3 from 42 SoilGrids layers (clay, sand, bulk density, SOC, 
pH, CEC, coarse fragments ×6 depth slices), Naivasha area 
(Source: author’s analysis)

Closer inspection of DSM products reveals some 
problems. Figure 5 shows a small area of Figure 4, 
at the south-east edge of Lake Naivasha. Notice the 
coarse grid cells (62.5 ha). The predictions are for each 
grid cell based on a point prediction at its centre. The 
resolution can be increased to the resolution of the 
covariates, subject to sufficient computer power. For 
example, the iSDA project (https://www.isda-africa.
com/) has produced DSM maps at 30  m resolution 
(0.9 ha) for all of Africa except deserts (Hengl et al, 
2021). An example in the same area as Figure 5 is 
shown in Figure 6. One may question whether this 
fine detail truly reflects differences in soil properties 
or is an artefact of the model. A similar effect, at the 
coarser resolution, can be seen in Figure 5. Recall 
that the machine learning models depend on point 
observations, which evidently are not sufficiently dense 
in covariate space. Yet the iSDA map is publicised as 
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“providing information at the scale of individual small 
farms across Africa” – notice the subtle qualifier “the 
scale of”, not directly claiming that an individual small-
scale farmer could use this map, as the cited paper 
makes clear. This illustrates a wider problem with DSM 
products: they can be oversold or misunderstood by 
prospective users. Of course, conventional soil maps 
have also been misunderstood, especially the concept 
that within a mapping unit at the design resolution 
there may be contrasting soils.

Figure 5. Detail of Figure 4, south-east edge of Lake Naivasha 
(Source: author’s analysis)

Figure 6. pH of 0–20 cm, iSDA 30 m resolution, south-east edge 
of Lake Naivasha (Source: iSDAsoil: Open Soil Data for Africa)

The theory underlying global-scale digital soil mapping 
is the ‘Homosoil’ idea (Mallavan et al, 2010), as 
operationalised in the SCORPAN framework (McBratney 
et al, 2003). The theory holds that under identical 
soil-forming conditions, identical soils form. This has 
been challenged on the grounds of chaos theory and 
contingency (Phillips, 2001), and in practical terms it 
is impossible to fully quantify the environment, over 
time, in which a soil developed. Still, the theory is used 
in machine-learning models to relate soils anywhere 

to a rich set of environmental covariates related to soil 
formation. These models are then applied everywhere. 
So, for example, soil observations and environmental 
covariates from Tanzania, Malaysia and Brazil are used 
together in one global model which is then applied 
everywhere in those countries.

The Homosoil theory, which assumes homology of 
soil-forming factors between a reference area and the 
region of interest (including climate, physiography and 
parent materials), is most useful for extrapolation to 
areas without field surveys or locally calibrated DSM 
products. These latter can be produced by the same 
methods as used in SoilGrids, but need sufficient 
observations in the area to be mapped.

A key step in the production of a global map is the 
harmonisation of soil observations from different 
soil surveys. This is the task of ISRIC’s World Soil 
Information Service (WoSIS) database (Batjes et al, 
2020). This contains observations for over 50 years; 
soils are dynamic so, for some properties such as 
soil organic matter, models may struggle to find 
strong correlations. Another problem is the poor 
georeference of older observations. The machine-
learning model depends on correctly determining the 
environmental covariates at the observation’s location 
by (GIS) map overlay. If the recorded location is not 
correct, the correlation will be poor. I have seen an 
example at the Kawanda Agricultural Research Station, 
near Kampala (Uganda), where several reference soil 
profiles had been described by a USAID mission in the 
1980s (before high-precision GPS) and these data had 
been incorporated into WoSIS. The landscape at the 
station is the classic soil catena in the same landscape 
where Geoffrey Milne developed this concept in East 
Africa in the 1930s, with a period of about 500  m 
from hill crest to toe slope. Along with colleagues, I 
navigated to the recorded coordinates for the points 
and it was immediately clear that these could not be 
at the correct positions on the catena, nor were the 
soils at these locations similar to the recorded soils. 
We contacted the retired technician who had assisted 
the Americans, and he led us to the actual locations 
of their observations, where it was clear these were 
correct landscape positions and soils. In this case, I 
could record the correct georeference and alter the 
WoSIS record, but there must be many georeferences 
that distort the models.

Soil properties are interesting, but soil surveyors also 
use soil classes as carriers of holistic information, 
especially for technology transfer. To date, the results 
of DSM for soil classes have been disappointing. This 
is partly because the observations used as the basis 
for DSM were classified inconsistently (as we all know 
from arguments around the soil pit) and over a long 
period, and partly because the soil classes themselves 
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are defined with rigid limits. DSM is, however, able 
to predict the probability of occurrence of each class 
and, thus, measures of uncertainty in the prediction 
(eg Shannon entropy). Again, this can be used in 
sensitivity analysis for models that use soil classes as 
inputs. Figure 7 shows the predicted WRB Reference 
Soil Groups and their probability, near Port Harcourt 
(Nigeria) – note the high uncertainty.

DSM and the modern soil surveyor’s toolkit
So, how does DSM fit into the modern soil surveyor’s 
or land evaluator’s toolkit, especially in un- or under-
surveyed areas? Maps produced by DSM can certainly 
be used in the absence of site-specific information to 
get a first idea of the soil properties within a grid cell. 
The uncertainty layers give an idea of the confidence 
the surveyor can have in the provided information. 
These maps are quite useful as pre-maps or, in 
Bayesian terms, prior information, either for field 
survey or local DSM using higher-resolution or area-
specific covariates. Hengl et al (2021) explain these 
trade-offs in the context of the intended use of the 
DSM products: 

“While there have been criticisms of the 
absolute accuracy of the iSDA soil maps, 
it is important to consider this in the 
context of real-world applications of the 
resource, for example in the generation of 
site-specific fertiliser recommendations. 
In this case, additional data collection 

would be required such as land use 
history, previous fertiliser applications 
and historic yields. However, we see 
this resource as a low-cost alternative 
to lab-based soil test that has value 
in reducing uncertainty around soil 
properties compared to having no 
information, which is especially 
relevant in a smallholder agriculture 
context. Our initial predictions are not 
likely to be correct enough to support 
informed management at the farm 
scale immediately. We can, however, 
propose our initial predictions as being 
relevant as a starting point, or base, 
that drives and informs additional new 
sampling, for each specific parcel of 
interest. … Promotion of first steps for 
basic improved crop management does 
not perhaps demand an exceptionally 
high accuracy of soil data. For example, 
a good estimate of soil pH can already 
help to inform which crops may be 
most suitable to grow / to not grow or if 
liming may be needed before any other 
agrochemicals are used” (emphasis 
added).

Thus, DSM products can certainly be used in 
development projects, with appropriate cautions 
and understanding of the products – how they were 
produced, their data sources and their limitations. In 

Figure 7. Predicted WRB Reference Soil Groups and their probability, near Port Harcourt (Nigeria). Map legend shows the most 
probable (Source: screen shot from SoilGrids v2.0 from ISRIC – World Soil Information; CC-BY 4.0)
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most areas where development work is proceeding, 
the major limitation to accurate DSM products is the 
density of appropriate soil observations (Loiseau et al, 
2021); sampling campaigns to provide these can and 
should go hand in hand with field soil survey to inform 
and evaluate the predictive models.
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