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PRESENTATION

The Global Soil Partnership (GSP) aims to promote sustainable soil management 
at all levels and in all land uses through normative tools that rely on evidence-
based science. Understanding the status of a given soil, including its properties and 
functions, and relating this information to the ecosystem services that soil provides 
becomes a mandatory action before making decisions on how to manage a soil 
sustainably. To achieve this, the availability of and use of soil data and information 
is fundamental to underpin soil management decisions. For this reason, members 
of the GSP have decided to establish a Global Soil Information System (GLOSIS) 
that relies on national soil information systems. 

In the process of establishing GLOSIS, a number of tools and networks are being 
created, including the International Network of Soil Information Institutions 
(INSII), a soil data policy and more. Taking advantage of this process and 
responding to a request for support in developing the Sustainable Development 
Goal Indicators, especially Indicator 15.3, the GSP Plenary Assembly instructed 
the Intergovernmental Technical Panel on Soils and the GSP Secretariat to develop 
a Global Soil Organic Carbon Map (GSOCMap) following the same bottom-up 
approach as GLOSIS. To this end, members under the INSII umbrella developed 
guidelines and technical specifications for the preparation of the GSOCMap (http://

www.fao.org/3/a-bp164e.pdf) and countries were invited to prepare their national soil 
organic carbon maps according to these specifications. 

Given the scientific advances in tools for mapping soil organic carbon (SOC), many 
countries requested the GSP Secretariat to support them in the process of preparing 
these national maps. An intensive capacity development programme on SOC carbon 
mapping was the answer to support countries in this process. Various regional and 
national training sessions were organized using an on-the-job-training modality to 
ensure that national experts were trained using their own datasets. To support this 
capacity development process, a reference knowledge source was needed, hence the 
GSP Secretariat invited a group of top experts to prepare a Soil Organic Carbon 
Mapping Cookbook.

This cookbook provides generic methodologies and the technical steps to produce a 
SOC map. This includes step-by-step guidance for developing 1 km grids for SOC 
stocks, as well as for the preparation of local soil data, the compilation and pre-
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processing of ancillary spatial data sets, upscaling methodologies, and uncertainty 
assessments. Guidance is mainly specific to soil carbon data, but also contains many 
generic sections on soil grid development due to its relevance for other soil properties. 

The main focus of the guidance is on the upscaling of SOC stocks in the GSOCMap 
and as such the cookbook supplements the “GSP Guidelines for sharing national 
data/information to compile a Global Soil Organic Carbon (GSOC) map”. It 
provides technical guidelines to prepare and evaluate spatial soil data sets to:

• Determine SOC stocks from local samples to a target depth of 30 cm;

• Prepare spatial covariates for upscaling; and

• Select and apply the best suitable upscaling methodology.

In terms of statistical upscaling methods, the use of conventional upscaling methods 
using soil maps and soil profiles is still very common, although this approach is mostly 
considered empirical by soil mappers. Even though evaluations are based on polygon 
soil maps, the resulting SOC maps can be rasterized to any target grid. However, 
a spatially-explicit assessment of uncertainties is impossible. The use of digital soil 
mapping to upscale local soil information is increasingly applied and recommended. 
This cookbook presents two approaches in detail, namely spatial modelling using 
either regression or data mining analysis, combined with geostatistics as regression 
kriging.

This first edition of the cookbook will be followed by a series of updates and extensions 
that would be necessary to cover a larger variety of upscaling approaches. The 
experiences gained throughout 2017 during the implementation of the GSOCMap 
capacity development programme will be considered in the next editions. This will 
especially include updates in the section on uncertainties which will be adjusted to 
provide more practical implementation steps.

It is our hope that this cookbook will fulfil its mandate of easily enabling any user 
to produce a SOC or other soil property map using soil legacy data and modern 
methods of digital soil mapping in contribution to improved decision making on soil 
management. 
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1 .  SOIL PROPERTY MAPS

1.1. DEFINITIONS, OBJECTIVES

Soil property maps represent spatial information about soil properties to a certain 
depth or for soil horizons. Conventionally, soil property maps are generated as 
polygon maps, with properties from typical soil profiles representing soil mapping 
units.

Digital Soil Mapping (DSM) allows more accurate spatial mapping of soil properties, 
including the spatial quantification of the prediction error. The quality of such 
predictions improves with increasing number of local observations (e.g. soil profiles) 
available to build prediction model. Whenever possible, DSM is recommended. 

The development of soil property maps via digital soil mapping is spatially flexible. 
For different soil properties (e.g. concentration and stocks of nutrients in the soil, 
carbon, heavy metals, pH, cation exchange capacity, physical soil properties such as 
particle sizes and bulk density, etc.), various depth classes and spatial resolution can 
be modelled depending on project and mapping objectives and available input data. 
For GSOCmap, a 1 km grid is pursued. The same methodology and input data can 
also be used to produce higher resolution soil grids.

The mapping of global soil organic carbon stocks (GSOC) will be the first 
implementation of a series of other soil property grids to be developed for GLOSIS, 
based on the typical GSP country-driven system. GSOCmap will demonstrate 
the capacity of countries all around the globe to compile and manage national 
soil information system and to utilize and evaluate these data following agreed 
international specifications. The GSP Secretariat, FAO and its regional offices, as 
well as the Regional Soil Partnerships, are all challenged together with the GSP 
members, especially the members of the International  Network of Soil Information 
Institutions INSII), to establish national capacity and soil data infrastructures to 
enable soil property mapping. 
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1.2. GENERIC MAPPING OF SOIL GRIDS: UPSCALING OF PLOT-LEVEL 
MEASUREMENTS AND ESTIMATES

The following table presents an overview of different geographic upscaling 
approaches, recommended to produce soil property maps, in particular GSOCmap.

Table 1.1 An overview of common upscaling methods

Conventional 
upscaling1

Class-
matching

Derive average SOC stocks per “class”: soil type for which 
a national map exists, or combination with other spatial 
covariates, e.g. land use category, climate type, biome, etc.

This approach is used in the absence of spatial coordinates of 
the source data.

Geomatching

Point locations with spatial referencing are overlaid with 
GIS layers of important covariates (such as a soil map). 

Upscaling is based on averaged SOC values 
per mapping unit.

Digital soil 
mapping2

Data 
Mining and 
Geostatistics

Multiple regression, classification tree, random forests, 
Regression kriging, kriging with external drift

1   Lettens, S., J. Van Orshoven, B. Van Wesemael and B. Muys (2004). Soil organic and inorganic carbon content of landscape 
units in Belgium for 1950 – 1970. Soil Use and Management 20: 40-47.

2   Dobos, E., F. Carré, T. Hengl, H.I. Reuter and G. Tóth (2006). Digital Soil Mapping as a support to production of functional 
maps. EUR 22123 EN, 68 pp. Office for Official Publications of the European Communities, Luxemburg.

Digital soil mapping is based on the development of functions for upscaling point 
data (with soil measurements) to a full spatial extent using correlated environmental 
covariates, for which spatial data are available.  

DSM: CONCEPT OF ENVIRONMENTAL CORRELATION THAT EXPLORES THE 
QUANTITATIVE RELATIONSHIP AMONG ENVIRONMENTAL VARIABLES AND SOIL 
PROPERTIES AND COULD BE USED TO PREDICT THE LATTER; MULTIVARIATE 
PREDICTION TECHNIQUES

D
E F I N I T I O

N
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2.  PREPARATION OF LOCAL SOIL 
PROPERTY DATA

2.1. SOIL PROFILES AND SOIL AUGERS

Soil profiles are complex real world entities. Soil profiles are composed of soil 
layers which form soil horizons; the soil layers have different properties and these 
properties are evaluated with different methods.  As we know, soil and vertical soil 
properties are landscape elements and part of matter dynamics (water, nutrients, 
gases, habitat). Local soil samples or soil profiles add a third dimension into the 
spatial assessment of soil properties in the landscape. 

Most commonly, soil are described as vertical profiles using soil pits (sometimes 
also augerings, but this is less accurate). Soil profiles are described using macro-
morphological properties. These properties can be assessed in the field without 
analysis by making a field inventory or land evaluation. For additional quantitative 
analysis, soils are then sampled by genetic horizon or by depth class. 

Sampling of soils is the basis to obtain quantitative information. Depending on the 
goal of a project, sampling can be quite diverse. Sampling can follow the description 
of the soil, or can be conducted without, for example using a spade or auger to 
generate a composite sample (for a certain depth independent of the morphological 
features such as soil horizons). 

Sampling locations can be representative for a certain location, project, field, or 
mapped object, such as a soil type. 

STEP 1: PREPARE METADATA ABOUT FOR THE SOIL SOURCE DATA 
(SEE THE METADATA SECTION)

S T E P
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2.2. SOIL DATABASE

In order to process and evaluate soil information from field assessments, soil profile 
and analytical information needs to be stored in a data base. This can be a set of 
simple Excel Spreadsheets, or a relational or object-oriented data base management 
system (Baritz et al. 2009). When working in R, SoilProfileCollections from the R ‘aqp’ 
package could be a useful tool. Tables 2.1 – 2.3 are examples of how soil information 
can be stored. The advantage of such organization is the possibility to develop 
relational databases which can be easily queried. Such a systematic approach will 
support the organization of national soil information and will reduce errors in future 
modelling exercises (Baritz et al. 2009).

Table 2.1 stores site-level data, which describe the location of the soil description 
and/or sampling site: spatial coordinates, landscape attributes such as slope gradient 
and slope form, soil class, land cover type, rock type etc. In this table every row 
should hold a single soil profile. One column, usually the first one, should be the soil 
profile’s unique identifier. Using the latter, soil information can be easily linked from 
one table to another.

Table 2.2 stores information from the soil description, such as horizon name, horizon 
thickness, organic matter content, carbonate content, soil color, etc. The first column 
contains the soil profile’s unique identifier. It is important to include the upper and 
lower limits for each soil layer; in case the sampling strategy deviates from soil 
layers/soil horizons, the upper and lower depth of the sampling locations should be 
specified if possible. This information is needed for modelling soil properties over 
the soil profile.

Table 2.3 contains the results from the laboratory soil analysis and again lists the 
soil profile’s unique identifier. Both tables 2.2 and 2.3 could also contain data for O 
horizons of forests, and H horizons for peat soils.

STEP 2: PREPARE TABLE WITH SOIL PROPERTIES FOR SOC MAPPING

S T E P
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Table 2.1 Example for site-level data table

Profile_ID X coord Y coord Soil Type Land 
Cover

Parent 
material

Solum 
depth 
[cm]1)

AB1 - 33.0109 - 69.9668 Luvic 
Calcisol Shrubland Limestone 45

BJ12 - 33.5727 - 69.8331 Eutric 
Cambisol Crops Basalt 110

... ... ... ... ...

1) SOLUM DEPTH DESCRIBES THE TOTAL DEPTH OF THE DEVELOPED SOIL. THIS IS IMPORTANT TO KNOW IF SOC STOCKS 
IN THE TARGET DEPTH 0-30 CM REFER TO A SOIL WHICH IS LESS DEEPLY DEVELOPED (E.G. REACHES BEDROCK OR 
GROUNDWATER WITHIN 30 CM DEPTH).

Table 2.2 Example for profile-description table

Profile_
ID

Horizon 
name

Upper 
Limit

Lower 
Limit

Organic 
matter 
content 
[%]2)

Carbonate 
content

Texture 
class

Stone 
content

AB1 A 0 18 2-4 SL SiL F

AB1 BC 18 53 1-1.5 MO SiC C

AB1 C 53 100 1-1.5 MO SiC C

BJ12 A 0 27 2-4 N SiCL V

… … … … …

2) CLASSES BASED ON FAO (2006)

Table 2.3 Example for soil analytical table

Profile_ID Organic 
carbon [%] Bulk density3) Sand Clay Silt ...

AB1 1.35

AB1 0.62

AB1 0.35

BJ12 1.86

… …

3) BULK DENSITY CAN ALSO BE ESTIMATED USING ORGANIC CARBON AND TEXTURAL DATA.

RULE 1: CONVENTIONS FOR FILLING TABLES: 0 = 0, NO DATA = NA, 
ALL NUMERIC

R U L E
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2.3. COMPLETENESS OF MEASUREMENTS/ESTIMATES 

The GSOC mapping guideline specifies which soil parameters are needed to produce 
a GSOCmap. Of course, other soil properties can be evaluated and modelled using 
this cookbook as well.

In order to calculate stocks we need soil properties A:Z...Explain pedotransfer 
functions, explain that you go from SOM to SOC, which soil properties you need 
and how you come to an estimate up to 30cm. If one needs to add a column to their 
table with calculated stocks than you need to explain them how to do that!

a) Stones

The estimation of stoniness is difficult and time consuming, and therefore not 
carried out in many national soil inventories, or only estimated visually in the profile. 
Unfortunately, if soil inventories and sampling are  done with simple pits or augers 
rather than standard soil pits, stones are very often not assessed. 

As a proxy, it is recommended to derive national default values from well described 
soil profile pits by soil type. 

b) Bulk density

The amount of fine earth is one of the basic estimation parameters to estimate SOC stocks 
in the mineral soil as well as in peat layers. It depends on the volume of soil considered 
(depth × reference area) and the bulk density (BD). BD expresses the soil weight per 
unit volume. When determining BD, it is important to subtract stones, if any, from 
the cylinder samples; if this is not done, BD is underestimated, and the resulting SOC 
stocks are overestimated. Stones in the cylinders are added to the total stone content 
in order to correct for the total amount of fine earth per volume of soil in a given area. 
 
Most of the soil profiles in national databases come from agricultural land. Very 
often, BD estimates do not consider fine stones because top soils (e.g. plough layers) 
seem to be free of visible stones. 
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Table 2.4 Bulk density values for mineral, forest and peat soils

Mineral soil Default values: General Guide for Estimating 
Moist Bulk Density

If analytical BD is missing, BD 
can be estimated using pedo-
transfer functions (examples 
are listed below)

Forest floor

Default bulk densities: Ottmar and Andreu 
(2007) 

Pine:  L 0.018 g/cm3 ,F/H 0.057 g/cm3 

Hardwood L 0.012 g/cm3, F/H 0.043 g/cm3

Barney et al. (1981)1):

Birch: L/H 0.17 g/cm3

Spruce: L 0.051 g/cm3, H 0.13 g/cm3

L (litter) layer (or Oi horizon, 
U.S. soil taxonomy)

Organic layer, or duff layer: 
partially decomposed material 
above the mineral soil and 
beneath the litter layer; F 
(fermentation) and H (humus) 
horizons (Oe and Oa, U.S. soil 
taxonomy)

Alternative: calculation of litter C stocks based 
on the weight per area of O layer horizons (e.g. 
if sampled with metal frames)

0.057 0.018

0.043 0.012

F/H L

Peat

Default value: 0.31 g/m3 (Batjes 1996)

Agus et al. (2011) distinguish different peat 
decomposition types (with different C content):

Sapric 0.174 (48.90 % C)

Hemic 0.117 (52.27% C)

Fibric 0.089 (53.56 % C)

The range of peat BD is 
generally about 0.02–0.3 t/m3 
depending on maturity and 
compaction, as well as the ash 
content (Agus et al. 2011)

1) DIFFICULTY WITH THE DERIVATION OF DEFAULT VALUES: THE OLDER STUDY BY BARNEY ET AL. (1981) SEEMS TO OVERESTI-
MATE BD: THE SAMPLING AND ANALYSIS METHOD NEEDS TO BE CAREFULLY REVIEWED. HOWEVER, THE AUTHORS ALSO LIST 
CITATIONS AND REFERENCE VALUES OF OTHER AUTHORS (SPRUCE, PINE, MIXED POPULAR/SPRUCE, MIXED SPRUCE/FIR). 
EXAMPLE FOR PEDOTRANSFER FUNCTIONS TO ESTIMATE BD, BASED ON THE SOIL ORGANIC MATTER CONTENT (SOC × 
1.724)

Example for Pedotransfer functions to estimate BD, based on the soil organic matter 
content (SOC × 1.724)

Saini (1996) BD = 1,62-0,06 * OM
Drew (1973) BD = 1/(0,6268 + 0,0361 * OM)
Jeffrey (1979) BD = 1.482 - 0,6786 * (log OM)
Grigal et. al (1989) BD = 0,669 + 0,941* e ^(-0,06 * OM)
Adams (1973) BD = 100/(OM/0,244 + (100-OM))/MBD
Honeysett & Ratkowsky (1989)   BD = 1/(0,564 + 0,0556*OM)
 
(MDB: Mineral particle density, assumed to be the specific gravity of quartz, 2.65 Mg m-3)

Each method is derived from a specific set of regional soils that is regionally adapted. 
Selection of the proper method for a given country shall be based on existing reviews 
and comparisons.
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c) Soil carbon analysis

Rosell et al. (2001) have closely reviewed the different SOC and SOM estimation 
procedures, and have also drawn some conclusions about the sources of errors. 
Determination of SOC from dry combustion methods is least susceptible to errors.

Dry combustion by Loss on Ignition, LoI: SOC is re-calculated applying a conversion factor: 
It is commonly assumed, that organic matter contains an average of 58% organic 
carbon (so-called Van Bemmelen factor 1.724; for non-organic horizons: SOC 
= SOM / 1.724). For organic horizons, conversion factor ranges from 1.9 to 2.5 
(Nelson and Sommers 1982). The inorganic carbon is not resolved, since typically, 
temperatures between 400 and 550°C are used.

Wet oxidation: Since wet oxidation is applied without additional (external) heating, 
low temperatures of around 120° (internal heat) are typical. Thus, the oxidation 
of carbon is incomplete, and a so-called oxidation factor needs to be applied. With 
external heating, the C-recovery of the method becomes improved, up to complete 
recovery. No correction against the mineral carbon is needed. Wet oxidation should 
typically only be applied to samples with < 5% organic matter.

Usually, an average of 76% organic carbon is recovered, leading to a standard 
oxidation factor or 1.33 (Lettens et al. 2005).

d) Carbonates

In case the total organic carbon is determined with temperatures &gt; 600-800°C, 
the proportion of mineral soil in CaCO3 has to be subtracted in order to derive the 
amount of organic carbon (inorganic carbon is also oxidized). The pH value gives 
the first indication whether the sample has to be analyzed for inorganic carbon or 
not.

It is crucial to report in the metadata whether national SOC values refer to total C 
or if the inorganic component has been considered.

e) Depth

The standard depth for GSOCmap is 0-30 cm. Subdivisions are possible depending 
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on the available data, by genetic horizon or depth classes. The following depths are 
additionally considered for GSOC map (optional):

Forest floor: thickness [cm] subdivision in horizons depending on national soil 
inventory method (e.g. L, F, H)

Peat: > 30 , < 100 depending on national data

STEP 3: FILL DATA GAPS TO CALCULATE LOCAL SOC STOCKS

S T E P 

2.4. COMPLETENESS OF DEPTH ESTIMATE 

Soil properties are commonly collected from the field inventories (see Table 2.2) 
or from sampling and analysing horizons and/or fixed depths. Since a fixed target 
depth of 30 cm is required for GSOC (other depth classes will be recommended in 
the future, following the GlobalSoilMap specifications (reference)), data holders 
are confronted with the following options:

Option 1: Soil sampling has already considered this depth: data can be directly used 
for upscaling see “Upscaling Methods” section)

Option 2: Horizons or layers/depth classes are sampled; but aggregation is needed 
over the 0-30 cm.

Option 3: The target depth (0-30 cm) was not completely covered by sampling e.g. 
only the A horizon or a topsoil layer (e.g. 0-20 cm) has been sampled. 
For both options 2 and 3, additional processing is needed (e.g. equal-area 
splines).

For both options 2 and 3, transformation is needed using e.g. equal-area splines. 

In the case of option 3, the  use of equal-area splines was first proposed by Ponce-
Hernandez et al. (1986), and later tested against real data (Bishop et al. 1999). This 
technique is based on fitting continuous depth functions for modelling the variability 
of soil properties with depth. Thus, it is possible to convert soil profiles to standard 
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depths, but also to fill gaps. The equal-area spline function consists of a series of 
local quadratic polynomials that join at ’knots’ located at the horizon boundaries 
thereby the mean value of each horizon is maintained by the spline fit. They are 
called equal-area splines because the area to the left of the fitted spline curve is equal 
to the area to the right of the curve.
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FIGURE 2.1 AN EQUAL-AREA QUADRATIC SPLINE FROM PONCE-HERNANDEZ ET AL. (1986). (CITED BY BISHOP ET AL., 1999).

The equal-area spline function is composed of two terms. The first term represents 
fidelity to the data. The second term measures roughness of the function. The 
parameter lambda controls the trade-off between the fidelity term and the roughness 
penalty. The choice of lambda is itself a non-trivial problem. When non prior 
information is available, many authors recommend using a lambda value between 
0.01 and 0.1.

Another set of parameters for these functions in many different softwares is the 
target standard depths. By defining a set of standard depths we can obtain the value 
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of the variable for a synthetic horizon of for example, 0 – 20 cm, regardless of how 
the profiles were originally sampled in the field.

In this cookbook manual we proposed two solutions to fill depth related gaps. One is 
based on ‘R’ and the other is CSIRO Spline Tool. While ‘R’ based approach requires 
background knowledge on ‘R’,CSIRO Spline Tool requires less.

2.4.1 TECHNICAL STEPS (EQUAL AREA SPLINES USING R)  

In R environment, the easiest way to apply equal-area splines is using the function 
GSIF::mpspline from the R package GSIF (Hengl 2016, see section 4.3.2). For 
illustration, a sample dataset has been used (see Chapter 5.). This function requires 
data stored as SoilProfileCollection (SPC) using package aqp. Nevertheless, data in 
any local soil database or in tables like the ones proposed before (Tables 2.1, 2.2 and 
2.3) can be transformed to a SPC.

 The function GSIF::mpspline has several arguments. One of the arguments 
is the lambda value mentioned before. The proposed default value is 0.1. 
Another argument for this function is the target standard depths. The 
function produces spline-estimated values at these depths. However, 
this function also produces spline-estimated values at 1 cm increments.  
The following technical steps require ‘R’ and certain packages.

STEP 1: LOAD NEEDED PACKAGES AND SET WORKING FOLDER

# load aqp package

library(aqp)

# load gsif package

library(gsif)

# set working folder, please change accordingly

setwd(“c://..../cookbook/”)

S T E P
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STEP 2: LOAD DATA AND PROMOTE TO SOILPROFILECOLLECTION

data <- read.csv(“profile-data.csv”, na.strings = “-9999”)

# We convert our table to a SoilProfileCollection (aqp) using function depths(

depths(data) <- ProfID ~ DepthFrom + DepthTo

# inspect the new object

str())

S T E P

 

 

STEP 3 - APPLYING THE SPLINE FUNCTION

Step 3: Apply mpsspline function to estimate values at fixed depths

S T E P

2.4.2 TECHNICAL STEPS (SPLINE TOOL V2.0  -ACLEP/CSIRO - AUSTRALIA-)
 
The Spline Tool is developed by CSIRO Land and Water. This standalone tool 
has an easy graphical user interface and allows user to estimate soil properties for 
standard depth intervals using mass preserving splines from input profiles with 
irregular or non-contiguous depth intervals. 
 
The tool is available at:  http://www.asris.csiro.au/downloads/GSM/SplineTool_v2.zip  
 
To install the Spline Tool simply extract the .zip content into a new folder.  
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STEP 1: DOWNLOAD THE SPLINE TOOL AND EXTRACT THE .ZIP FILE CONTENT IN A 
NEW FOLDER

S T E P
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STEP 2: DOUBLE CLICK ON SPLINETOOL.EXE AND RUN THE APPLICATION. THE 
TOOL REQUIRES THE MICROSOFT .NET FRAMEWORK, WHICH IS DEVELOPED, 
SERVICED AND SUPPORTED BY MICROSOFT AND AVAILABLE AT 
https://www.microsoft.com/net/download/framework

S T E P

 

STEP 3: USE BROWSE BUTTON TO BROWSER YOUR .CSV FILE AND CLICK IMPORT 
BUTTON TO LOAD YOUR DATA. THE SPLINE TOOL USES COMMA DELIMITED INPUT 
TEXT FILES AND GENERATES CMSOUT.TXT, STDOUT.TXT AND SINGLE.TXT. THE 
SPLINE TOOL CURRENTLY INPUTS AND OUTPUTS ONE SOIL PROPERTY AT EACH 
TIME. THE CMSOUT.TXT FILE CONTAINS SOIL ATTRIBUTE VALUES FOR DEFAULT 
DEPTH INTERVALS TO A DEPTH OF 200 CM. THE MAXIMUM DEPTH OF THE 
OUTPUT IS LIMITED BY THE MAXIMUM INPUT DEPTH. THESE STANDARD DEPTHS 
CAN BE EASILY CHANGED ON THE SETTINGS TAB. 0-30 CM WOULD BE USED FOR 
GSOC MAP MANDATORY DEPTH. 

S T E P
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STEP 4:  CLICK “EXPORT” BUTTON TO EXPORT THE DATA AS .TXT. THE RESULTS 
ARE NOW STORED IN THE STDOUT.TXT FILE. NOTE THAT THE OUTPUT 
FILES (STDOUT.TXT AND CMSOUT.TXT) CONTAIN VALUES FOR LAMBDA (THE 
SMOOTHNESS OF THE FUNCTION) AND TMSE (ESTIMATED MEAN SQUARED 
ERROR OF THE SPLINE). 

S T E P
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STEP 5: THE  OUTPUT .TXT FILE WILL HAVE THE FOLLOWING COLUMNS

• PROFILE ID/SAMPLE ID

• UPPER DEPTH

• LOWER DEPTH

• OUTPUT VALUE

• LAMBDA (THE SMOOTHNESS OF THE SPLINE FUNCTION)

• TMSE (ESTIMATED MEAN SQUARED ERROR)

S T E P

The tool exports the data in it’s own folder as sdout.txt. Even though the input file 
has X, Y coordinates, they are missing from the exported file since the tool does not 
keep any other information than Id, UpperDepth, LowerDepth, Value, Lambda, 
tsme. We need to add X, Y columns back in the data table to be able to use the data 
in a DSM framework. 
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Further reading
 
Spline_Readme_v2.doc in the .zip archive and;

B.P. Malone, A.B. McBratney, B. Minasny, G.M. Laslett (2009). Mapping 
continuous depth functions of soil carbon storage and available water capacity. 
Geoderma, 154, 138-152 
 
T.F.A. Bishop, A.B. McBratney & G.M. Laslett (1999). Modelling soil attribute 
depth functions with equal-area quadratic smoothing splines. Geoderma, 91, 27-
45. 
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3. PREPARATION OF SPATIAL 
COVARIATES

3.1 DEM-DERIVED COVARIATES

3.1.1 DEM SOURCE DATA SETS

Currently, two global level 30 m DEMs are freely available: the Shuttle Radar 
Topographic Mission (SRTM) and the ASTER Global Digital Elevation Model 
(GDEM). They provide topographic data at the global scale, which are freely 
available for users. Both DEMs were compared by Wong et al. (2014). Comparison 
against high-resolution topographic data of Light Detection and Ranging (LiDAR) 
in a mountainous tropical montane landscape showed that the SRTM (90 m) 
produced better topographic data in comparison with ASTER GDEM. 

 

• RECOMMENDED FOR NATIONAL LEVEL APPLICATIONS: 30 M GDEM / SRTM

• RECOMMENDED FOR GLOBAL LEVEL APPLICATIONS: SRTM 90 M, 
RESAMPLED 1 KILOMETRE.

In both cases noise and artefacts need to be filtered out. ASTER seems to contain 
more large artefacts (e.g. peaks), particularly in flat terrain, which are very difficult 
to remove through filtering. 

GRASS GIS OR GDAL: USE "MDENOISE" MODULE/UTILITY TO REMOVE NOISE 
WHILE PRESERVING SHARP FEATURES LIKE RIDGES, LINES AND VALLEYS.
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SRTM contains many gaps (pixels with no-data). These gaps could be filled using 
splines. SAGA GIS has a module called ‘Close Gaps with Splines’ and other similar 
tools for doing this.

3.2 PARENT MATERIAL 

Parent material has a crucial impact on soil formation, soil geochemistry and soil 
physics. Parent material, if not specifically mapped by soil mappers and included in soil 
maps, is usually available from Geology maps. These maps focus on rock formation, 
mineral components and age, and often lack younger surface sediments (even in 
quaternary maps). Parent material/rock types classified by soil mappers considers more 
strongly geochemistry and rock structure. The most commonly available approximation 
to parent material is certainly a geology map. Its geochemistry has essential impact on 
the soil chemistry, e.g. cation exchange capacity, base saturation, and nutrient stock. 
The rock structure determines the ability to disintegrate, which has impact on soil 
physical properties, like texture, skeleton content, permeability, and soil thickness.  
 
National parent material and geology maps may be used. Other available datasets 
and data portals are given on the ISRIC WorldGrids website (worldgrids.org). 

• OneGeology: The world geological maps are now being integrated 
via the OneGeology project which aims at producing a consistent 
Geological map of the world in approximate scale 1:1M (Jackson, 2007) 
www.onegeology.org

• USGS has several data portals, e.g. that allow browsing of the International 
Surface Geology (split into South Asia, South America, Iran, Gulf of Mexico, 
Former Soviet Union, Europe, Caribbean, Bangladesh, Asia Pacific, Arctic, 
Arabian Peninsula, Africa and Afghanistan) https://mrdata.usgs.gov/geology/world

• Hartmann and Moosdorf (2012) have assembled a global, purely lithological 
database called GLiM (Global Lithological Map). GLiM consists of over 1.25 
million digital polygons that are  classified in three levels (a total of 42 rock-type 
classes). https://www.geo.uni-hamburg.de/en/geologie/forschung/geochemie/glim.html

• USGS jointly with ESRI has released in 2014 a Global Ecological 
Land Units map at 250 m resolution. This also includes world layer 
of rock types. This data can be downloaded from the USGS site 
http://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global
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3.3 SOIL MAPS

Soil maps play a crucial role for upscaling soil property data from point locations. 
They can be the spatial layer for conventional upscaling, they can also serve as a 
covariate in digital soil mapping. Predicted soil property maps have lower quality 
in areas where the covariates such as relief, geology and climate so not correlate 
well with the dependent variable, here soil carbon stocks. This is especially true 
for soils under groundwater or stagnic water influence. This information is well-
represented in soil maps. 

FAO, IIASA, ISRIC, ISS CAS and JRC produced a gridded 1 km soil class map 
(HWSD). Global HWSD-derived soil property maps can be downloaded as geotiffs at  
http://worldgrids.org/doku.php/wiki:layers#harmonized_world_soil_database_images_5_km 

(see also section 3.6).

3.4 LAND COVER/LAND USE

Besides soil, geology and climate, land use and/or land cover data are unarguably 
vital data for any statistical effort to map soil properties. There are many of various 
sources of data on land cover including global and continental products, such as 
GlobCover, GeoCover, Globeland30, CORINE Land Cover.

3.4.1 GLOBCOVER (GLOBAL)

GlobCover is a European Space Agency (ESA) initiative which began in 2005 in 
partnership with JRC, EEA, FAO, UNEP, GOFC-GOLD and IGBP. The aim of 
the project was to develop a service capable of delivering global composites and land 
cover maps using as input observations from the 300 m MERIS sensor onboard 
the ENVISAT satellite mission. ESA makes available the land cover maps, which 
cover 2 periods: December 2004 - June 2006 and January - December 2009. The 
classification module of the GlobCover processing chain consists in transforming the 
MERIS-FR multispectral mosaics produced by the pre-processing modules into a 
meaningful global land cover map. The global land cover map has been produced in 
an automatic and global way and is associated with a legend defined and documented 
using the UN LCCS. The GlobCover 2009 land cover map is delivered as one global 
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land cover map covering the entire Earth. Its legend, which counts 22 land cover 
classes, has been designed to be consistent at the global scale and therefore, it is 
determined by the level of information that is available and that makes sense at this 
scale (Bontemps et al., 2011). 

The GlobCover data can be downloaded at: http://due.esrin.esa.int/page_globcover.php

3.4.2 LANDSAT GEOCOVER (GLOBAL)

The Landsat GeoCover collection of global imagery was merged into mosaics by 
the Earth Satellite Company (now MDA Federal). The result was a series of tiled 
imagery that is easier to wield than individual scenes, especially since they cover 
larger areas than the originals. The great detail in these mosaic scenes, however, 
makes them large in storage size, so the Mr.Sid file format, which includes 
compression operations, was chosen for output. While GeoCover itself is available 
in three epochs of 1975, 1990 and 2000, only the latter two epochs were made into 
mosaics. 

Coverage: The GeoCover Landsat mosaics are delivered in a Universal Transverse 
Mercator (UTM) / World Geodetic System 1984 (WGS84) projection. The mosaics 
extend north-south over 5 degrees of latitude, and span east-west for the full width 
of the UTM zone. For mosaics below 60 degrees north latitude, the width of the 
mosaic is the standard UTM zone width of 6 degrees of longitude. For mosaics 
above 60 degrees of latitude, the UTM zone is widened to 12 degrees, centred on 
the standard even-numbered UTM meridians. To insure overlap between adjacent 
UTM zones, each mosaic extends for at least 50 kilometres to the east and west, and 
1 kilometre to the north and south. 

Pixel size: 14.25 meters (V 2000)

The data is available at: ftp://ftp.glcf.umd.edu/glcf/Mosaic_Landsat (FTP Access)

3.4.3 GLOBELAND30 (GLOBAL)

GlobeLand30, the world’s first global land cover dataset at 30 m resolution for the 
years 2000 and 2010, was recently released and made publicly available by China. 
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The National Geomatics Center of China under the “Global Land Cover Mapping 
at Finer Resolution” project has recently generated a global land cover map named 
GlobeLand30. The dataset covers two timestamps of 2000 and 2010, primarily 
acquired from Landsat TM and ETM+ sensors, which were then coupled/checked 
with some local products. 

The data is publicly available for non-commercial purposes at: 
http://www.globallandcover.com/GLC30Download/index.aspx   

Further reading and other global data sources: 
http://worldgrids.org/doku.php/wiki:land_cover_and_land_use 

3.4.4 CORINE LAND COVER (EUROPE ONLY)

The pan-European component is coordinated by the European Environment 
Agency (EEA) and produces satellite image mosaics, land cover / land use (LC/LU) 
information in the CORINE Land Cover data, and the High Resolution Layers. 

The CORINE Land Cover is provided for 1990, 2000, 2006 and 2012. This vector-
based dataset includes 44 land cover and land use classes. The time-series also 
includes a land-change layer, highlighting changes in land cover and land-use. 
The high-resolution layers (HRL) are raster-based datasets (100 m, 250 m) which 
provide information about different land cover characteristics and is complementary 
to land-cover mapping (e.g. CORINE) datasets.

The CORINE Land Cover Data are available at:  
http://www.eea.europa.eu/data-and-maps/data 
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3.5 CLIMATE

3.5.1 WORLDCLIM V1.4 AND V2 (GLOBAL)

WorldClim is a set of global climate layers (gridded climate data) with a spatial 
resolution of about 1 km2 (10 minutes, 5 minutes, 2.5 minutes are also available). 
These data can be used for mapping and spatial modelling. The current version is 
Version 1.4. and a preview of Version 2 is available for testing at worldclim.org. The 
data can be downloaded as generic grids or in ESRI Grid format.

The WorldClim data layers were generated by interpolation of average monthly climate 
data from weather stations on a 30 arc-second resolution grid. In V1.4, variables 
included are monthly total precipitation, and monthly mean, minimum and maximum 
temperatures, and 19 derived bioclimatic variables. The WorldClim precipitation data 
were obtained from a network of 1,473 stations, mean temperature from 24,542 stations, 
and minimum and maximum temperatures from 14,835 stations (Hijmans et al. 2005). 
 
The Bioclimatic parameters are:  annual mean temperature, mean diurnal range, iso-
thermality, temperature seasonality, max temperature of warmest month, minimum 
temperature of coldest month, temperature annual range , mean temperature of 
wettest quarter, mean temperature of driest quarter, mean temperature of warmest 
quarter, mean temperature of coldest quarter, annual precipitation, precipitation of 
wettest month, precipitation of driest month, precipitation seasonality (coefficient 
of variation), precipitation of wettest quarter, precipitation of driest quarter, 
precipitation of warmest quarter, precipitation of coldest quarter.

WorldClim Climate Data are available at: www.worldclim.org (WorldClim 1.4 (current 
conditions) by www.worldclim.org; Hijmans et al., 2005. Int. J. of Clim. 25: 1965-1978. 
Is licensed under a Creative Commons Attribution-ShareAlike 4.0 International 
License).
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3.5.2 GRIDDED AGRO-METEOROLOGICAL DATA IN EUROPE (EUROPE)

CGMS database contains meteorological parameters from weather stations 
interpolated on a 25×25 km grid. Meteorological data are available on a daily basis 
from 1975 to the last calendar year completed, covering the EU Member States, 
neighbouring European countries. 

The following parameters are available at 1 day time resolution;

maximum air temperature (°C), 
minimum air temperature (°C), 
mean air temperature (°C), 
mean daily wind speed at 10m (m/s), 
mean daily vapour pressure (hPa), 
sum of precipitation (mm/day), 
potential evaporation from a free water surface (mm/day), 
potential evapotranspiration from a crop canopy (mm/day), 
potential evaporation from a moist bare soil surface (mm/day), 
total global radiation (KJ/m2/day),Snow Depth

Data Access: http://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx

3.6 GSOC MAP - DATA REPOSITORY (ISRIC, 2017)

ISRIC World Soil Information has established a data repository contains raster 
layers of various biophysical earth surface properties for each territory in the world. 
These layers can be used as covariates in a digital soil mapping exercise.

3.6.1 COVARIATES AND  EMPTY MASK

The territories and their boundaries are obtained from from the Global 
Administrative Unit Layers (GAUL)dataset:  
each folder contains three subfolders; 
* covs: GIS layers of various biophysical earth surface properties 
* mask: an 'empty'  grid file of the territory with territory boundary according to 
GAUL. This grid can for instance be used as a mapping mask. 
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* soilgrids: all SoilGrids250m soil class and property layers as available through 
www.soilgrids.org. Layers are aggregated to 1 km.

3.6.2 DATA SPECIFICATIONS

File format: GeoTiff 
Coordinate system: WGS84, latitude-longitude in decimal degrees 
Spatial resolution: 1km 

3.6.3 DATA ACCESS

ftp://gsp.isric2.org/ (username: gsp, password: gspisric) or  
ftp://85.214.253.67  (username: gsp, password: gspisric) 
 
LICENCE and ACKNOWLEDGEMENT 
The GIS layers can be freely used under the condition that proper credit should be given to the 
original data source in each publication or product derived from these layers. Licences, data 
sources, data citations are indicated the data description table.

3.7 PREPARATION OF A SOIL PROPERTY TABLE FOR  
SPATIAL STATISTICS

The upscaling procedures (Chapter 6) depend on the rationale that the accumulation 
of local soil carbon stocks (and also other properties) depend on parameters for 
which spatial data are available, such as climate, soil type, parent material, slope, 
management. This information (Covariates) must be collected first. Details are 
provided above. The properties contained in the covariates can be extracted to 
each georeferenced sample site and added to the soil property table (Table 3.1). 
This table is used for training and validation of the statistical model for predicting 
the SOC stocks which subsequently can be applied to the full spatial extent. 
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Table 3.1 Extended input table for spatial analysis (spatial SOC prediction table)

Profile_ID SOC stock 
[t/ha] Properties Land 

form

Topographic 
wetness 
index

Avg annual 
temperature

Other 
covariates

AB1

BJ12

… …

 
ISRIC World Soil Information offers ca. 130 different national covariates for 
download. 

This table is then used for the main upscaling procedures (See the Upscaling 
Methods Section)

3.8 PREPARATION OF A SOIL PROPERTY TABLE FOR 
SPATIAL STATISTICS

The upscaling procedures (section 4) depend on the rationale, that the accumulation 
of local soil carbon concentrations and stocks (and also other properties) depends 
on influential parameters for which spatial data are available, such as climate, soil 
type, parent material, slope, management. Any parameter in the table of local soil 
properties, for which a spatial layer is available, may be included in the final table. 
Other covariates will be added in section 3. An example is the clay content, which 
may be derived from a soil type or parent rock map. 

Table 3.2 Input table for spatial analysis (spatial SOC prediction table)

Profile_ID SOC stock 
[t/ha] 0-30

SOC stock 
[t/ha] litter Soil type Clay [%] Other soil 

properties 

AB1

BJ12

… …

3) BULK DENSITY CAN ALSO BE ESTIMATED USING ORGANIC CARBON AND TEXTURAL DATA.
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IN CASE THIS TABLE IS PREPARED FOR DIFFERENT DEPTHS, 0-10 CM, 10-30 
CM, AND IF THE HOST INSTITUTION INTENDS TO DEVELOP DIFFERENT SPATIAL 
MODELS FOR DIFFERENT DEPTHS (E.G. SEPARATE SPATIAL PREDICTION MODEL 
FOR LITTER AND MINERAL SOIL 0-30), THEN THE SEPARATE GRIDS HAVE TO BE 
ADDED.
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D
E F I N I T I O

N
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4. SETTING-UP THE SOFTWARE 
ENVIRONMENT

This cookbook focuses on soil organic carbon modelling using open source digital 
mapping tools. The instructions and screen captures in this section will guide you 
through installing and manually configuring the software to be used for digital soil 
mapping procedures for Microsoft Windows desktop platform. Instructions for 
the other platforms (Linux Flavours, MacOS) can be found through free online 
resources.

4.1 USE OF ‘R’ , RSTUDIO AND R PACKAGES 
R is a language and environment for statistical computing. R provides a wide variety 
of statistical (linear modelling, statistical tests, time-series, classification, clustering, 
…) and graphical methods, and is highly extensible. 

4.1.1 OBTAINING AND INSTALLING R 

4.1.2 INSTALLATION

 
 

STEP 1: GO TO HTTPS://CLOUD.R-PROJECT.ORG/INDEX.HTML
S T E P

 

STEP 2: PICK AN INSTALLATION FILE FOR YOUR PLATFORM 
S T E P
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STEP 3: FOR WINDOWS OS YOU CAN CLICK ON THE LINK “DOWNLOAD R FOR 
WINDOWS” 

S T E P

 

 

STEP 4: YOU CAN START THE INSTALLATION BY CLICKING ON THE DOWNLOADED 
.EXE FILE. R CAN BE INSTALLED IN MORE THAN 20 LANGUAGES.

S T E P
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STEP 5: READ GNU-GPL LICENSE INFORMATION AND CLICK> NEXT 
S T E P
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STEP 6: SELECT DESTINATION LOCATION AND CLICK> NEXT
S T E P
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STEP 7: SELECT COMPONENTS (LEAVE DEFAULTS) AND CLICK> NEXT

S T E P
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STEP 8: STARTUP OPTIONS (LEAVE DEFAULTS) AND CLICK> NEXT
S T E P
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STEP 9: SELECT ADDITIONAL TASKS (LEAVE DEFAULTS) AND CLICK> NEXT

S T E P
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STEP 10: INSTALLER WILL INSTALL R ON YOUR COMPUTER
S T E P
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STEP 11: AFTER INSTALLATION FINISHED CLICK > FINISH
S T E P

 

STEP 12: CLICK ON THE “R” ICON ON THE DESKTOP OR IN THE START MENU
S T E P
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STEP 13: R NOW SHOULD START
S T E P

 
 

 

4.2 OBTAINING AND INSTALLING R STUDIO
Beginners will find very hard to start using R because it has no Graphical User 
Interface (GUI). There are some GUIs which offer some of the functionality of R. 
RStudio makes R easier to use. It includes a code editor, debugging and visualization 
tools. In this cookbook we would like focus on a GUI which makes R easier to 
use. R Studio’s Open Source Edition can be downloaded at https://www.rstudio.com/

products/rstudio/download/ . On the download page, “RStudio Desktop, Open Source 
License” option should be selected.

4.2.1 INSTALLATION
You can follow very similar steps to install RStudio. 
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STEP 1: PICK THE VERSION THAT IS LISTED AS RECOMMENDED FOR YOUR 
SYSTEM. INSTALLING SHOULD BE STRAIGHTFORWARD.

S T E P

 
 
 

 

STEP 2: RUN THE RSTUDIO INSTALLER BY CLICKING ON 
THE DOWNLOADED .EXE FILE.

S T E P
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STEP 3: SELECT INSTALL LOCATION AND CLICK > NEXT.
S T E P
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STEP 4: THE INSTALLER WILL INSTALL THE SOFTWARE.

S T E P
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STEP 5: CLICK> FINISH WHEN THE WIZARD FINISHED THE INSTALLATION
S T E P
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STEP 7: AFTER THE INSTALLATION,YOU ONLY NEED TO OPEN RSTUDIO, BECAUSE 
IT WILL AUTOMATICALLY ALSO START  R.

S T E P

4.2.2 GETTING STARTED WITH R

R Manuals:  http://cran.r-project.org/manuals.html

Contributed Documentation:  http://cran.r-project.org/other-docs.html

Quick-R:  http://www.statmethods.net/index.html

Stackoverflow R Community : https://stackoverflow.com/questions/tagged/r 
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4.3. R PACKAGES
• When you download R, you get that ``base" R system

• The R system comes with basics; implements the R language

• R becomes so useful with the large collection of packages that extend the 
basic functionality of R

• R packages are developed by the R community

4.3.1 FINDING R PACKAGES

The primary source for the R packages is CRAN’s official website. For spatial 
applications, many packages are available. You can obtain information about the 
available packages on CRAN with the available.packages() function. The function 
returns a matrix of details corresponding to packages currently available at one 
or more repositories. However, there are more than 10000 packages in the CRAN 
repository. 

An easier way to browse the list of packages is using the Task Views link, which 
groups together many packages related to a given topic. 

HTTP://CRAN.R-PROJECT.ORG/WEB/VIEWS/

For example, the Task View for analysis of Spatial Data can be accessed at:  
https://CRAN.R-project.org/view=Spatial.

The following code installs the “ggplot2” package from CRAN

> install.packages("ggplot2")

The packages can be installed also using the graphical user interface.

D
E F I N I T I O

N
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CLICK “PACKAGES” IN THE TOP MENU THEN CLICK “INSTALL PACKAGE(S)”.  
OR USE THE APPROPRIATE TAB ON THE BOTTOM RIGHT, BY DEFAULT.

4.3.2 MOST USED R PACKAGES FOR DIGITAL SOIL MAPPING 

As was previously mentioned, R is extensible trough packages. R packages are 
collections of R functions, data, documentation and compiled code easy to share 
with others. They are more than 10000 R packages available at the Comprehensive 
R Archive Network (CRAN) (cran.r-project.org). In the following subsections we 
are going to present the most used packages related with soil property mapping.

 
Soil science and Pedometrics

aqp: Algorithms for quantitative pedology. http://cran.r-project.org/web/ packages/

aqp/index.html. A collection of algorithms related to modeling of soil resources, soil 
classification, soil profile aggregation, and visualization.

GSIF: Global soil information facility. http://cran.r-project.org/web/packages/GSIF/index.

html. Tools, functions and sample datasets for digital soil mapping. Global Soil 
Information Facilities - tools (standards and functions) and sample datasets for 
global soil mapping.

soiltexture: "The Soil Texture Wizard" is a set of R functions designed to produce 
texture triangles (also called texture plots, texture diagrams, texture ternary plots), 
classify and transform soil textures data. These functions virtually allows to plot 
any soil texture triangle (classification) into any triangle geometry (isosceles, right-
angled triangles, etc.). This set of function is expected to be useful to people using soil 
textures data from different soil texture classification or different particle size systems. 
Many (&gt; 15) texture triangles from all around the world are predefined in the 
package. A simple text based graphical user interface is provided: soiltexture_gui(). 

D
E F I N I T I O

N
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Spatial Analysis

sp: http://cran.r-project.org/web/packages/sp/index.html. A package that provides classes 
and methods for spatial data. The classes document where the spatial location 
information resides, for 2D or 3D data.

raster: http://cran.r-project.org/web/packages/raster/index.html. Reading, writing, 
manipulating, analyzing and modeling of gridded spatial data. The package 
implements basic and high-level functions and processing of very large files is 
supported.

rgdal: http://cran.r-project.org/web/packages/rgdal/index.html. Provides bindings to Frank 
Warmerdam’s Geospatial Data Abstraction Library (GDAL).

RSAGA: http://cran.r-project.org/web/packages/RSAGA/index.html. RSAGA provides access 
to geocomputing and terrain analysis functions of SAGA GIS http://www.saga-gis.org/

en/index.html from within R by running the command line version of SAGA.

Modeling

caret: http://cran.r-project.org/web/packages/caret/index.html. Extensive range of functions 
for training and plotting classification and regression models.

Cubist: http://cran.r-project.org/web/packages/Cubist/index.html. Regression modeling 
using rules with added instance-based corrections. Cubist models were developed 
by Ross Quinlan.

C5.0: http://cran.r-project.org/web/packages/C50/index.html. C5.0 decision trees and rule-
based models for pattern recognition. Another model structure developed by Ross 
Quinlan.

gam: http://cran.r-project.org/web/packages/gam/index.html. Functions for fitting and 
working with generalized additive models.

nnet: http://cran.r-project.org/web/packages/nnet/index.html. Software for feed-forward 
neural networks with a single hidden layer, and for multinomial log-linear models.
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gstat: http://cran.r-project.org/web/packages/gstat/. Variogram modelling; simple, 
ordinary and universal point or block (co)kriging, sequential Gaussian or indicator 
(co)simulation; variogram and variogram map plotting utility functions.

ithir: A collection of functions and algorithms specific to pedometrics. The 
package was developed by Brendan Malone at the University of Sydney. 

Mapping and plotting

Both raster and sp have handy functions for plotting spatial data. Besides using the 
base plotting functionality, another useful plotting package is ggplot2.

plotKML: Writes sp-class, spacetime-class, raster-class and similar spatial and 
spatio-temporal objects to KML following some basic cartographic rules.

4.4 R AND SPATIAL DATA

R has a large and growing number of spatial data packages. We recommend 
taking a quick browse on R’s official website to see the spatial packages available:  
http://cran.r-project.org/web/views/Spatial.html

4.4.1 READING SHAPEFILES 

The ESRI's Shapefile format is widely used for storing vector-based spatial data 
(i.e., points, lines, polygons). This example demonstrates use of rgdal package that 
provides functions for reading and/or writing shapefiles.
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> library(rgdal)

> PointData <- readOGR("shapes/points.shp")

OGR data source with driver: ESRI Shapefile 

Source: "shapes/points.shp", layer: "points"

with 3302 features

It has 15 fields

Integer64 fields read as strings:  ID X Y UpperDepth LowerDepth slp dem twi tmpn tmpd 

> str(PointData)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

  ..@ data       :'data.frame': 3302 obs. of  15 variables:

. ..$ ID        : Factor w/ 3228 levels "10","100","1000",..: 1896 3083 3136 3172 1 66 117 141

144 179 ...

  .. ..$ ProfID    : Factor w/ 3228 levels "P0004","P0007",..: 1 2 3 4 5 6 7 8 9 10 ...

  .. ..$ X         : Factor w/ 3225 levels "7455723","7456085",..: 270 293 276 379 376 354 363

338 328 332 ...

  .. ..$ Y         : Factor w/ 3244 levels "4526565","4527631",..: 3001 2993 3045 2988 2966

2964 2977 2962 2992 2950 ...

  .. ..$ UpperDepth: Factor w/ 1 level "0": 1 1 1 1 1 1 1 1 1 1 ...

  .. ..$ LowerDepth: Factor w/ 1 level "30": 1 1 1 1 1 1 1 1 1 1 ...

  .. ..$ Value     : Factor w/ 3192 levels "0","0.018701358",..: 2188 2869 2438 2138 1379

2414 2650 3005 3141 3034 ...

  .. ..$ Lambda    : num [1:3302] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ...

  .. ..$ tsme      : num [1:3302] 0.1601 0.00257 0.0026 0.00284 0.00268 ...

  .. ..$ slp       : Factor w/ 55 levels "0","1","10","11",..: 6 30 52 19 25 18 8 10 19 14 ...

  .. ..$ prec      : num [1:3302] 998 1014 780 839 844 ...

  .. ..$ dem       : Factor w/ 1077 levels "1001","1002",..: 421 377 142 72 57 248 215 354 370 335 ...

  .. ..$ twi       : Factor w/ 80 levels "100","101","102",..: 42 48 62 47 46 53 49 48 41 46 ...

  .. ..$ tmpn      : Factor w/ 15 levels "270","271","272",..: 3 3 8 10 10 8 8 4 3 5 ...

  .. ..$ tmpd      : Factor w/ 18 levels "281","282","283",..: 2 2 5 8 9 7 6 6 4 7 ...

  ..@ coords.nrs : num(0) 

  ..@ coords     : num [1:3302, 1:2] 20.8 20.8 20.8 20.9 20.9 ...

  .. ..- attr(*, "dimnames")=List of 2

  .. .. ..$ : NULL

  .. .. ..$ : chr [1:2] "coords.x1" "coords.x2"

  ..@ bbox       : num [1:2, 1:2] 20.5 40.9 23 42.4

  .. ..- attr(*, "dimnames")=List of 2

  .. .. ..$ : chr [1:2] "coords.x1" "coords.x2"

  .. .. ..$ : chr [1:2] "min" "max"

  ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

  .. .. ..@ projargs: chr "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

>
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We may want to use these data in other GIS environments such as ArcGIS, QGIS, 
SAGA GIS etc. This means we need to export the SpatialPointsDataFrame to an 
appropriate spatial data format such as a shapefile. “rgda”l is again used for this via 
the writeOGR() function. To export the data set as a shapefile:

> writeOGR(PointData, ".", "pointdata-shape", "ESRI Shapefile")

# Check your working directory for presence of this file

4.4.2 COORDINATE REFERENCE SYSTEMS (CRS) IN R

We need to define the CRS (Coordinate Reference System) to be able to perform 
any sort of spatial analysis in R. To clearly tell R this information we define the CRS 
which describes a reference system in a way understood by the PROJ.4 projection 
library http://trac.osgeo.org/proj

An interface to the PROJ.4 library is available in the rgdal package. Alternative to 
using Proj4 character strings, we can use the corresponding yet simpler EPSG code 
(European Petroleum Survey Group). “rgdal” also recognizes these codes. If you 
are unsure of the Proj4 or EPSG code for the spatial data that you have, but know 
the CRS, you should consult http://spatialreference.org for assistance.

The following example shows how you can create a spatial object from a .csv file. 
We can use the coordinates() function from the sp package to define which columns 
in the data frame refer to actual spatial coordinates—here the coordinates are listed 
in columns X and Y.



    4. SETTING-UP THE SOFTWARE ENVIRONMENT | 51  

> getwd()

[1] "C:/masis"

> mydata <- read.csv("pointdata/mac-soc.csv")

> coordinates(mydata) <- ~X + Y

> str(mydata)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

  ..@ data       :'data.frame': 3298 obs. of  2 variables:

  .. ..$ ProfID: Factor w/ 3224 levels "P0004","P0007",..: 771 1254 478 1349 606 1232 2708

1994 605 1790 ...

  .. ..$ SOC   : num [1:3298] 0.0187 0.0743 0.1422 0.1428 0.1461 ...

  ..@ coords.nrs : int [1:2] 2 3

  ..@ coords     : num [1:3298, 1:2] 7498970 7537324 7549442 7532535 7616462 ...

  .. ..- attr(*, "dimnames")=List of 2

  .. .. ..$ : chr [1:3298] "1" "2" "3" "4" ...

  .. .. ..$ : chr [1:2] "X" "Y"

  ..@ bbox       : num [1:2, 1:2] 7455723 4526565 7667660 4691342

  .. ..- attr(*, "dimnames")=List of 2

  .. .. ..$ : chr [1:2] "X" "Y"

  .. .. ..$ : chr [1:2] "min" "max"

  ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

  .. .. ..@ projargs: chr NA

> proj4string(mydata) <- CRS("+init=epsg:6316")

> str(mydata)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

  ..@ data       :'data.frame': 3298 obs. of  2 variables:

  .. ..$ ProfID: Factor w/ 3224 levels "P0004","P0007",..: 771 1254 478 1349 606 1232 2708

1994 605 1790 ...

  .. ..$ SOC   : num [1:3298] 0.0187 0.0743 0.1422 0.1428 0.1461 ...

  ..@ coords.nrs : int [1:2] 2 3

  ..@ coords     : num [1:3298, 1:2] 7498970 7537324 7549442 7532535 7616462 ...

  .. ..- attr(*, "dimnames")=List of 2

  .. .. ..$ : chr [1:3298] "1" "2" "3" "4" ...

  .. .. ..$ : chr [1:2] "X" "Y"

  ..@ bbox       : num [1:2, 1:2] 7455723 4526565 7667660 4691342

  .. ..- attr(*, "dimnames")=List of 2

  .. .. ..$ : chr [1:2] "X" "Y"

  .. .. ..$ : chr [1:2] "min" "max"

  ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

  .. .. ..@ projargs: chr "+init=epsg:6316 +proj=tmerc +lat_0=0 +lon_0=21 +k=0.9999 

+x_0=7500000 +y_0=0 +ellps=bessel +towgs84=682,-203,480,0,0,0,0 +units"| __truncated__
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4.4.3 WORKING WITH RASTERS

Most of the functions for handling raster data are available in the raster package. 
There are functions for reading and writing raster files from and to different formats. 
In digital soil mapping we mostly work with data in table format and then rasterise 
this data so that we can make a continuous map. For doing this in R environment, we 
will load raster data in a data frame.  This data is a digital elevation model provided 
by ISRIC for FYROM (Chapter 3.6).

> DEM <- raster("cov/DEMENV5.tif")

> str(DEM)

Formal class 'RasterLayer' [package "raster"] with 12 slots

  ..@ file    :Formal class '.RasterFile' [package "raster"] with 13 slots

  .. .. ..@ name          : chr "C:\\masis\\cov\\DEMENV5.tif"

  .. .. ..@ datanotation : chr "INT2S"

  .. .. ..@ byteorder     : chr "little"

  .. .. ..@ nodatavalue   : num -Inf

 … | __truncated__

We may want to export this raster to a suitable format to work in a standard GIS 
environment. See the help file for writeRaster (> ?writeRaster) to get information 
regarding the supported grid types that data can be exported. Here, we will export 
our raster to ESRI Ascii, as it is a common and universal raster format.

> writeRaster(DEM, filename = "mac-dem.asc",format = "ascii", overwrite = TRUE)

#Check your working space for presence of the ascii file!

We may also want to export our mac.dem to KML file using the KML function. 
Note that we need to re-project the data to WGS84 geographic. The raster re-
projection is performed using the projectRaster function. Look at the help file for 
this (> ?projectRaster)KML is a handy function from raster for exporting grids to 
kml format.

> KML(DEM, "DEM.kml", col = rev(terrain.colors(255)),    overwrite = TRUE)

#Check your working space for presence of the kml file and try to open it in Google 

EarthTM)
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4.4 OTHER DSM RELATED SOFTWARE/TOOLS

QGIS: QGIS is available at: http://www.qgis.org/en/site/forusers/download.html 

SAGA GIS:  https://sourceforge.net/projects/saga-gis/files/

ArcGIS: 60 day trial can be downloaded at http://www.esri.com/software/arcgis/ 

free-trial (needs registration) 

4.5 References
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5. DEMONSTRATION DATASET

5.1. MASIS (CHAPTER 2 AND 6)
The sample dataset used for the spline function and the regression kriging has been 
extracted from the Macedonian Soil Information System Database (MASIS). The 
database contains around 4000 soil profiles with 11000 horizons. The data table 
overviews and the summary statistics are given below. 

5.1.1 PROFILE TABLE

This table stores site level information (Profile no, Profile ID, X and Y Coordinates)

# first 10 rows are shown here.  head function can be used to display only the first few 

rows; #head(mydata, n=10) where head is the function, mydata is the object and n refers 

number of #rows to be shown

> head(MASISProfiles, n=10)

OBJECTID ProfileNo ProfID X Y

1 4318 43 P6517 7587329 4634774

2 4319 13 P5841 7528639 4582915

3 4320 35 P5842 7529064 4581678

4 4321 26 P5843 7529646 4584551

5 4322 20 P5844 7531852 4589188

6 4323 36 P5845 7530443 4589328

7 4324 18 P5846 7529855 4588422

8 4325 41 P5847 7530225 4587847

9 4326 21 P5848 7531111 4588093

10 4327 19 P5849 7532257 4589815

...       
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5.1.2 HORIZON DATA TABLE

This table stores information from the soil description, such as horizon name, horizon 
thickness, organic matter content, carbonate content, soil colour, etc.

# first 10 rows are shown here.  head function can be used to display only the first few 

rows; #head(mydata, n=10) where head is the function, mydata is the object and n refers 

number of #rows to be shown

> MASISHorizons <- read.csv("HorizonData.csv")

> head(MASISHorizons, n=10)

X OBJECTID HorNO HorID DepthFrom DepthTo Code SOC ProfID

1 842 24154 1 P3234H01 0 29 0 0 P3234

2 843 24155 2 P3234H02 29 60 0 0 P3234

3 844 24156 3 P3234H03 60 80    0 0 P3234

4 845 27578 1 P1102H01 0 30 0 0 P1102

5 846 27579 2 P1102H02 30 60 0 0 P1102

6 847 27994 3 P4002H03 48 90 0 0 P4002

7 848 27995 4 P4002H04 90 115 0 0 P4002

8 849 28086 1 P4039H01 2 25 0 0 P4039

9 850 28087 2 P4039H02 25 57 0 0 P4039

10 851 28088 3 P4039H03 57 90 0 0 P4039

...

The summary statistics: 

# R provides a wide range of functions for obtaining summary statistics. One method of 

# obtaining descriptive statistics is to use the summary( ) function..

# usage:  summary(object)

> summary(point.data$Value)

   Min. 1st Qu. Median Mean 3rd Qu. Max. 

  0.000 1.005 1.493 1.912 2.244 50.330 

5.2 KENYA (RANDOM FOREST - CHAPTER 6.3)

The sample data used in the Random Forest Chapter was obtained from a study 
of SOC in north-eastern Kenya (Omuto, 2008). The data was collected using a 
Y-shape sampling frame for topsoil (0-30 cm).

5.3 DATA ACCESS
Please contact GSP Secretariat via e-mail (GSP-GSOC-Map@fao.org) for the sample 
datasets.
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6.  UPSCALING METHODS

6.1. CONVENTIONAL UPSCALING USING SOIL MAPS

6.1.1 OVERVIEW

The two conventional upscaling methods, in the context of SOC mapping, 
are described by Lettens et al. (2004). Details about weighted averaging can 
be found in Hiederer (2013). Different conventional upscaling approaches 
were applied in many countries (Baritz et al. 1999 (Germany), Cruz-Gaistardo 
(Mexico), Greve et al. 2007 (Denmark), Koelli et al. 2009 (Estonia), Arrouay et 
al. 2001 (France), Bhatti et al. 2002 (Canada)). Because the structure of soil 
map databases differs between countries (definition of the soil mapping unit, 
stratification, soil associations, dominating and co-dominating soils, typical and 
estimate soil properties for different depths), it is difficult to define a generic 
methodology for the use of these maps for upscaling soil property information.  

However, the essential principle which is commonly used, is to combine soil property 
data from local observations with soil maps via class- and geomatching. 
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DIVERSITY OF NATIONAL SOIL LEGACY DATA SETS

IN ORDER TO DEVELOP A REPRESENTATIVE AND LARGE NATIONAL SOIL 
DATABASE, VERY OFTEN, DATA FROM DIFFERENT SOURCES (E.G. SOIL SURVEYS 
OR PROJECTS IN DIFFERENT PARTS OF THE COUNTRY AT DIFFERENT TIMES) 
ARE COMBINED. THE FOLLOWING CASE OF BELGIUM DEMONSTRATES HOW 
AVAILABLE LEGACY DATABASES COULD BE COMBINED. THREE DIFFERENT 
SOURCES ARE USED TO COMPILE AN OVERVIEW OF NATIONAL SOC STOCKS:

DATA SOURCE 1: SOIL PROFILE DATABASE WITH 13,000 POINTS OF GENETIC 
HORIZONS; FOR EACH SITE, THERE IS INFORMATION ABOUT THE SOIL SERIES, 
MAP COORDINATES AND LAND USE CLASS; FOR EACH HORIZON, THERE IS 
INFORMATION ABOUT DEPTH AND THICKNESS, TEXTURAL FRACTIONS AND 
CLASS, VOLUME PERCENTAGE OF ROCK FRAGMENTS; ANALYTICALLY, THERE IS 
THE ORGANIC CARBON CONTENT AND INORGANIC CARBON CONTENT. 

DATA SOURCE 2: FOREST SOIL DATA BASE WHICH INCLUDES ECTORGANIC 
HORIZONS. ACCORDING TO THEIR NATIONAL DEFINITION, THE TERM 
“ECTORGANIC” DESIGNATES THE SURFACE HORIZONS WITH AN ORGANIC 
MATTER CONTENT OF AT LEAST 30%, THUS, IT INCLUDES BOTH THE LITTER LAYER 
AND THE ORGANIC SOIL LAYERS. FOR THE CALCULATION OF SOC STOCKS FOR 
THE ECTORGANIC LAYER, NO FIXED-DEPTH WAS USED, INSTEAD THE MEASURED 
THICKNESS OF THE ORGANIC LAYERS AND LITTER LAYERS WAS APPLIED.

DATA SOURCE 3: 15,000 SOIL SURFACE SAMPLES WERE USED (UPPER 20 CM OF 
MINERAL SOIL); CARBON MEASUREMENTS ARE AVAILABLE PER DEPTH CLASS.

FROM ALL DATA SOURCES, SOC STOCKS FOR PEAT SOILS WERE CALCULATED 
SEPARATELY. 
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6.1.2 TECHNICAL STEPS 

 
 

STEP 1: DATA PREPARATION
S T E P

• Separate the data base for forests, peat and other land uses

• If only horizons are provided: derive or estimate average depth of horizons 
per soil type; add upper and lower depth.

• Check completeness of parameters per depth using the solum depth to code 
empty cells 

• Correction of organic carbon in case total carbon was determined (total 
carbon minus inorganic carbon concentration)

• Correction of Walkley and Black method for incomplete oxidation (1.32)

• If BD measured is lacking, select proper pedotransfer functions (PTF) and 
estimate BD. There are many PTF. At best, publications about the choice of 
the best suited PTF for specific physio-geographic conditions are available.

• If stone content is missing, investigate using other data sources or literature, 
to which a correction for stones should be applied

• if possible, derive the standard average stone content for different soils/
horizons/depths, or used published soil profiles, as a simple correction factor.

• Calculate SOC stocks for all mineral and peat soils over 0-30 cm, and 
optionally for forest organic layers and, peat &gt;30 &lt;100 cm.

STEP 2: PREPARATORY GIS OPERATIONS
S T E P

• Prepare Covariates

• Identify properties of covariates for each point observation using geo-
matching 

• Upscaling using geo-matching of all points: Extract the covariate 
information to all georeferenced sample sites. The SOC values from all 
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points within the unit are then averaged. It is assumed that the 
points represent the real variability of soil types within the units  

STEP 3: UPSCALING

S T E P

• Upscaling using class-matching of points in agreement with classes

Through class-matching, only those points or profiles are attributed to a soil or 
landscape unit if both the soil and the land use class are the same. Class-matching 
thus can be performed regardless of the profile location. Before averaging, a 
weighing factor can be introduced according to the area proportions of dominant, 
co-dominant and associated soils. Each profile needs to be matched to its soil 
type/landscape type, and the SOC value averaged.

1. Determine a soil or landscape unit (e.g. national soil legend stratified by 
climate area and main land cover type (forest, grassland, cropland)

2. Calculate average SOC stocks from from all soils which match the soil/
landscape unit

3. Present the Soil/landscape map with SOC stocks, do not classify SOC stocks 
into groups (e.g. < 50, 50-100, > 100).

Note: Pre-classified SOC maps cannot be integrated into a global GSOCmap 
legend.  

• Upscaling using geo-matching

Because of its importance, geo-matching is described in more detail (section 
6.1.3).

6.1.3 GEO-MATCHING 

it is important to first prepare the working environment pre-processed all input 
data. The following  section presents different Geo-matching procedures; 

1. Setting up software and working environment

2. Geo-matching SOC with WRB Soil map (step-by-step, using the Soil Map 
of Macedonia and the demonstration data presented above)
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3. Geo-matching SOC with other environmental variables: Land use 

4. Finally, the development of  Landscape Units (Lettens et al. 2004) is outlined. 

This example was developed for QGIS and focusses on SOC mapping using 
vector data. QGIS 2.18 with GRASS 7.05 will be used. For more information, 
see also: 

• https://gis.stackexchange.com

• http://www.qgis.org/

• http://www.qgisforum.org/

 

STEP 1: SETTING UP A QGIS PROJECT.
S T E P

1. Install QGIS and supporting software; download the software at  
http://www.qgis.org/en/site/forusers/download.html (select corrent version for 
Windows, Mac or Linux, 32 or 64 bit).

2. Create a work folder, e.g. D:\GSOC\practical_matching. Copy the folder 
with the Macedonian demonstration data into this folder.

3. Start ‘QGIS desktop with GRASS’
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FIGURE 6.1 SHOWS THE START SCREEN OF QGIS DESKTOP. IN THE UPPER LEFT PANEL THERE IS THE BROWSER PANEL, 
WHICH LISTS THE GEODATA USED FOR THIS EXAMPLE. IN THE BOTTOM LEFT, THE LAYER INFORMATION IS GIVEN FOR THE 
LAYERS DISPLAYED ON THE RIGHT.

4. Load the Macedonian soil map. Right-click the file in the Browser panel and 
add the map to your project.

5. Display the soil classes. Right-click on the file in the Layers Panel, properties. 
Go to Style and change from ‘Single symbol’ to ‘Categorized’ (Fig. 6.2). 
Select the column ‘WRB’ and press the icon ‘Classify’ and change the colours 
if you want. Next, apply the change and finish with clicking the OK-button.
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6. Ensure the correct projection for this project. 
Go to: Project -> Project properties -> CRS

In this case, you automatically use the local projection for Macedonia. The EPSG 
code is 3909 which corresponds to MGI 1901/ Balkans zone 7 (Figure 6.3).
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7. Save the project in the created folder

Load and display the pre-processed SOC point data. If a shapefile already exists, 
this is done the same way as described in Step 4. If you have the data as a text file, 
you need to create a vector layer out of that file. Go to Layer -> Add Layer -> Add 
Delimited Text layer. Select the correct file and proper CRS projection. The layer 
should be added to your Layers Panel and displayed on top of the Soil Map.
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STEP 2. GEO-MATCHING SOC WITH WRB SOIL MAP.
S T E P

In this section you will make a SOC map, based on the Macedonian Soil Map and 
the SOC values at the sampled points, following 3 steps: 1) Extract the soil map 
information for the point data, 2)  obtain the mean and standard deviation of the 
SOC stocks per soil class, based on the point data and 3) assign these values to the 
corresponding soil map units. The steps are detailed below:

1. Extract the soil map information to the soil profile data by ‘Join Attributes 
by location’. Vector -> Data Management Tools -> Join Attributes by location. Here, 
the target vector layers are the soil point data, and the join vector layer is the 
Macedonian Soil Map. The geometric predicate is ‘intersects’. Specify at the 
‘joined table’ to keep only matching records and save the ‘joined layer’ as a 
new file (Fig. 6.4).

FIGURE 6.4 JOIN ATTRIBUTES BY LOCATION
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2. Check the newly generated file, open the attribute table. The new file is 
added to the ‘Layers Panel’ . Right-click on the file and open the attribute 
table. The information from the Macedonian Soil Map is now added to the 
soil point data.

3. Most likely, the SOC values in the table are not numeric and thus statistics 
cannot be calculated. Check the data format, right-click on the file in the 
‘Layers Panel’ and check the Type name of the SOC field under the tab 
‘Fields’. If they are not integer then change the format.

4. Change of the data format: Open the attribute table and start editing (the 
pencil symbol in the upper left corner of  your table). Open the field calculator 
and follow these instructions (Fig. 6.5):

a. Check box: Create a new field

b. Output field name: Specify the name of your field

c. Output field type: Decimal Number (real)

d. Output field length: 10, precision: 3

 i.  Expression: to_real(‘SOC’), the to_real function can be found under   
 ‘conversions’ and the ‘SOC’ field is found under ‘Fields and Values’ 

FIGURE 6.5 EXAMPLE FIELD CALCULATOR
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5. after calculating the field, save edits  and leave the editing mode prior to 
closing the table. if changes are not saved, the added field will be lost.

6. calculate the median soc stock per soil type. go to the tab ‘Vector’-> group 
stats. select the layer from the spatial join you made in Step 2. add the field 
‘soc’ and median to the box with ‘values’ and the field ‘wrb’ to the ‘rows’. 
make sure the box with ‘use only selected features’ is not checked. now 
calculate the statistics. a table will be given in the left pane (figure 6.6). 
save this file as .csv and repeat the same for the standard deviation.

FIGURE 6.6 CALCULATE GROUP STATISTICS

7. Join the mean and standard deviation of SOC to the Soil Map. First add 
the files generated during step 6 to the Layers Panels. In the Layers Panel, 
right-click on the Macedonian Soil Map. Go to Properties -> Joins and add a 
new join for both the median and standard deviation of SOC. The Join and 
Target Field are both ‘WRB’.
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8. Display the SOC maps. Go to the layer properties of the Macedonian Soil 
Map. Go to Style and change the legend to a graduated legend. In the column 
you indicate the assigned SOC values. Probably this is not a integer number 
and so you have to convert this number again to a numeric values. You can 
do this with the box next to the box (Fig. 6.7). Change the number of classes 
to e.g. 10 classes, change the mode of the legend and change the color scheme 
if you want and apply the settings. Now you have a map with the median 
SOC stocks per WRB soil class.

FIGURE 6.7  CHANGE THE LEGEND STYLE TO DISPLAY THE SOC VALUES

9. In order to generate a proper layout, go to Project -> New Print Composer

a. Add map using Layout -> Add Map. Define a square on the canvas and the 
selected map will be displayed.

b. Similarly, title, scale bar, legend and a north arrow can be added. Specific 
properties can be changed in the box ‘Item properties’.

c. When the map is finished, it can be exported as an image or pdf.
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FIGURE 6.8 EXAMPLE OF THE MAP COMPOSER

10. Repeat step 2-8 but now for the standard deviation of the SOC stocks.

11. Save the file as a new shapefile: Go to ‘Layer Panels -> Save as -> ESRI ShapeFile 
and make sure that you define the symbology export: Feature Symbology. 
Now, a shapefile is generated, with both the median and standard deviation 
SOC stock per soil type. Redundant fields can be removed after the new file 
is created.

STEP 3: GEO-MATCHING SOC WITH OTHER ENVIRONMENTAL VARIABLES: LAND USE
S T E P

1. Start a new project and add the soil point data and Macedonia Soil Map 
layers from the Browser panel

2. Add the Land Use raster file to the Layers Panels. This is a raster file with 1 
kilometre resolution and projected in lat long degrees (WGS84). For more 
information about this product see the online information from worldgrids: 
http://worldgrids.org/doku.php/wiki:glcesa3
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3. Change the projection to the MGI 1901/ Balkans region7. Go to Raster -> 
Projections -> Warp and select the proper projection and a suitable file name, 
e.g. LU_projected_1km. Tick the checkbox for the resampling method and 
choose Near. This is nearest neighbour and most suitable for a transformation 
of categorical data, such as land use (Fig. 6.9).

FIGURE 6.9 CHANGE THE PROJECTION OF A RASTER FILE

4. In order to geomatch the soil point data with Land Use, the raster file needs 
to be converted into a vector file. Go to Raster -> Conversions -> Polygonize. 
Set a proper output filename, e.g. LU_polygon_1km, and check the tickbox 
for Fieldname.
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5. Change the legend style into categories (Step 1-5):

Now, the steps from the previous section need to be repeated, using the land use 
polygon map instead of using the Macedonian Soil Map.

6. Join attributes by location using the soil point data and the polygon land use 
map.

7. Calculate the median and standard deviation of SOC by using the Group 
Statistics for SOC and the Land Use classes and save the files as .csv.

8. Add the generated .csv files to the Layers Panel.

9. Join the files with the LU polygon map, generated at step 3-4.

10. Change the classes in the legend and inspect the histogram with the median 
SOC values. Try to find a proper definition of the class boundaries (Step 
2-8).

[EXTRA]  STEP 4: JOINING LANDSCAPE UNITS AND SOIL MAPPING UNITS TO 
SUPPORT CLASS- AND GEO-MATCHING

S T E P

In this section it is outlined how SOC stocks can be mapped following the method 
outlined by Lettens et al.(2004; DOI:10.1079/SUM2003221). The general idea is that 
the landscape is stratified into more or less homogenous units and subsequently, the 
SOC stocks are obtained following the procedure outlined earlier in this practical. 
Lettens et al. (2004) outlines a method to stratify the landscape into homogeneous 
strata with respect to Land Use and Soil Type, as was explained earlier. In order to 
obtain such strata, the Soil Map and the Land Use map need to be combined. This 
can be done using various types of software, e.g. ArcMap, GRASS, QGIS or R. 

When using the GIS software, the only thing that needs to be done is intersecting 
the vector files and dissolving the newly created polygon features. Depending on the 
software and the quality of your shapefile you may experience problems with the 
geometry of your shapefile. Generally, ArcMap and GRASS correct the geometry 
when the shapefile is loaded, while QGIS does not do this automatically. There are 
various ways to correct the geometry, however, correcting the geometry falls outside 



72 | SOIL ORGANIC CARBON MAPPING | Cookbook Manual

the scope of this training. Therefore, we give some hints on how to correct your 
geometry prior to using the functions ‘Intersect’ and ‘Dissolve’.

1. Change the LU raster map to 5 kilometer resolution: Right-click the Lu_
project_1km file and select Save as. Change the resolution to 5000 meters. 
Scroll down, check the Pyramids box, and change the resampling method to 
Nearest Neighbour.

2. Convert the raster map to a polygon map and add the file to the Layers Panel

3. Check the validity of the Soil Map and Land Use Map: Vector -> Geometry 
Tools -> Check Validity 

4. Below you find the instructions in case you have no problems with your 
geometry:

5. Intersect the Soil Map and the Land Use Map. In ArcGIS and QGIS you 
can use this function. Go to Vector -> Geoprocessing tools -> Intersection. 
(In GRASS you have to use the function ‘Overlay’ from the Vector menu)

6. Dissolve the newly generated polygons. Vector -> Geoprocessing tools -> 
Dissolve

7. Next, this layer can be used to continue with the classmatching or geomatching 
procedures.

WHEN ENCOUNTERING PROBLEMS WITH THE GEOMETRY THERE ARE AT LEAST THREE 
WAYS TO CORRECT YOUR GEOMETRY:

• RUN THE V_CLEAN TOOL FROM GRASS WITHIN QGIS. OPEN THE PROCESSING 
TOOLBOX -> GRASS GIS 5 COMMANDS -> VECTOR -> V.CLEAN

• INSTALL THE PLUGIN ‘PROCESSING LWGEOM PROVIDER’. GO TO THE PLUGINS MENU 
AND SEARCH FOR THE PLUGIN AND INSTALL. YOU CAN FIND THE NEWLY INSTALLED 
TOOL IN THE PROCESSING TOOLBOX BY TYPING THE NAME IN THE SEARCH 
FUNCTION

• MANUALLY CORRECT THE ERROR NODES OF THE VECTOR FEATURES 
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6.1.4 References
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6.2. REGRESSION-KRIGING

6.2.1 OVERVIEW

Regression-kriging is a spatial interpolation technique that combines a regression 
of the dependent variable (target variable) on predictors (i.e. the environmental 
covariates) with kriging of the prediction residuals. In other words, Regression-
Kriging is a hybrid method that combines either a simple or a multiple-linear 
regression model with ordinary kriging of the prediction residuals.   The Multiple 
regression analysis models the relationship of multiple predictor variables and one 
dependent variable, i.e. it models the deterministic trend between the target variable 
and environmental covariates. The modelled relationship between predictors and 
target are summarized in regression equation, which can then be applied to a 
different data set in which the target values are unknown but the predictor variables 
are known. The regression equation predicts the value of the dependent variable 
using a linear function of the independent variables.  

In this section, we review the regression kriging method. First, the deterministic 
part of the trend is modelled using a regression model. Next, the prediction residuals 
are kriged. In the regression phase of a regression-kriging technique, there is a 
continuous random variable called the dependent variable (target) Y (in our case 
SOC) and a number of independent variables which are selected covariates, x1, 
x2,...,xp. Our purpose is to predict the value of the dependent variable using a linear 
function of the independent variables. The values of the independent variables 
(environmental covariates) are known quantities for purposes of prediction, the 
model is:

Y = β0 + β1x1 + β2x2 + ··· + βpxp + ε

Where Y is the response variable, X is a predictor variable and ε is the residual or 
error.
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IN PARTICULAR CASES, STEPWISE MULTIPLE LINEAR REGRESSION (SMLR) OR 
PRINCIPAL COMPONENT REGRESSION CAN BE USED. STEPWISE MULTIPLE 
LINEAR REGRESSION (SMLR) USUALLY SELECTS PREDICTORS THAT HAVE THE 
STRONGEST LINEAR CORRELATION WITH THE DEPENDENT VARIABLE, AND 
EXPLAINS THE VARIABILITY IN THE TARGET VARIABLE BEST. IN PCR, INSTEAD OF 
REGRESSING THE DEPENDENT VARIABLE ON PREDICTORS DIRECTLY, THE ORIGINAL 
REGRESSOR VARIABLES ARE REPLACED BY THEIR PRINCIPAL COMPONENTS, THUS 
ORTHOGONALIZING THE REGRESSION PROBLEM AND MAKING COMPUTATIONS 
EASIER AND MORE STABLE. THE PCR IS STILL BASED ON A STANDARD LINEAR 
REGRESSION MODEL, BUT USES PCA FOR ESTIMATING THE UNKNOWN REGRESSION 
COEFFICIENTS IN THE MODEL. UNLIKE MULTIPLE LINEAR REGRESSION (MLR) AND 
STEPWISE MULTIPLE LINEAR REGRESSION (SMLR), PRINCIPAL COMPONENTS 
REGRESSION (PCR) CAN COPE WITH DATA CONTAINING LARGE NUMBERS OF 
COVARIATES THAT ARE HIGHLY COLLINEAR. 
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THE LITERATURE AND THE GEOSTATISTICAL TOOLS USE DIFFERENT TERMS 
FOR REGRESSION-KRIGING. BOTH KRIGING WITH EXTERNAL DRIFT (KDE), AND 
REGRESSION-KRIGING (RK) ARE BASICALLY THE SAME TECHNIQUES. THESE 
PROCEDURES ARE WIDELY AVAILABLE IN COMMERCIAL OR OPEN SOURCE 
STATISTICAL SOFTWARE PACKAGES, SUCH AS SPSS, MINITAB OR R. 

D
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6.2.2 ASSUMPTIONS

Standard linear regression models with standard estimation techniques make a 
number of assumptions about the predictor variables, the response variables and 
their relationship. One must review  the assumptions made when using the model. 

Linearity: The mean value of Y for each specific combination of the X’s is a linear 
function of the X’s. In practice this assumption can virtually never be confirmed; 
fortunately, multiple regression procedures are not greatly affected by minor 
deviations from this assumption. If curvature in the relationships is evident, one 
may consider either transforming the variables, or explicitly allowing for nonlinear 
components.

Normality Assumption: It is assumed in multiple regression that the residuals 
(predicted minus observed values) are distributed normally (i.e., follow the normal 
distribution). Again, even though most tests (specifically the F-test) are quite robust 
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with regard to violations of this assumption, it is always a good idea, before drawing 
final conclusions, to review the distributions of the major variables of interest. You 
can produce histograms for the residuals as well as normal probability plots, in order 
to inspect the distribution of the residual values. 

NORMALITY OF THE RESIDUALS IS CRUCIAL BECAUSE IT IS AN ESSENTIAL FOR 
REGRESSION-KRIGING... 

D
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Collinearity: There is not perfect collinearity in any combination of the X’s. A 
higher degree of collinearity, or overlap, among independent variables can cause 
problems in multiple linear regression models. Collinearity (also multicollinearity) 
is a phenomenon in which two or more predictors in a multiple regression model are 
highly correlated. Collinearity causes increase in variances and relatedly increases 
inaccuracy.

Distribution of the Errors: The error term is normally distributed with a mean of zero 
and constant variance. 

Homoscedasticity: The variance of the error term is constant for all combinations of X’s. 
The term homoscedasticity means “same scatter.” Its antonym is heteroscedasticity 
(“different scatter”).

6.2.3 PRE-PROCESSING OF COVARIATES 

Before using the selected predictors, multicollinearity assumption must be reviewed. 
As an assumption, there is not perfect collinearity in any combination of the X’s. A 
higher degree of collinearity, or overlap, among independent variables can cause 
problems in multiple linear regression models. The multicollinearity of number of 
variables can be assessed using Variance Inflation Factor (VIF). In R, the function 
vif() from caret package can estimate the VIF. There are several rules of thumb to 
establish when there is a serious multi-collinearity (e.g. when the VIF square root is 
over 2). The Principal component analysis can be used to overcome multicollinearity 
issues. 

Principal components analysis can cope with data containing large numbers of 
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covariates that are highly collinear which is the common case in environmental 
predictors. Often the principal components with higher variances are selected 
as regressors. However, for the purpose of predicting the outcome, the principal 
components with low variances may also be important, in some cases even more 
important.

The PCA + Linear Regression (PCR) method may be coarsely divided into three main steps:

1. Run PCA on the data matrix for the predictors to obtain the principal 
components, and then select a subset of the principal components for further 
use.

2. Regress the dependent variable on the selected principal components as 
covariates, linear regression to get estimated regression coefficients.

3. Transforming the data back to the scale of the actual covariates, using the 
selected PCA loadings.

6.2.4 THE TERMINOLOGY

 FIGURE 6.1  REGRESSION MODEL

• Dependent variable (Y): What we are trying to predict 
(e.g. soil organic carbon content).

• Independent variables (Predictors) (X): Variables that we believe influence 
or explain the dependent variable (Covariates: environmental covariates - 
DEM derived covariates, soil maps, land cover maps, climate maps). The 
data sources for the environmental predictors are provided in Chapter 3.

• Coefficients (β): values, computed by the multiple regression tool, reflect 
the relationship and strength of each independent variable to the dependent 
variable.

• Residuals (ε): the portion of the dependent variable that cannot be explained 
by the model; the model under/over predictions. 
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6.2.5 TECHNICAL STEPS

Before we proceed with the regression analysis, it is advisable to inspect the histogram 
of the dependent/target variable, in order to see if it needs to be transformed before 
fitting the regression model. The data for the selected soil property is normal when 
the frequency distribution of the values follow a bell-shaped curve (Gaussian 
distribution) which is symmetric around its mean. Normality tests may be used to 
assess normality. If a normality test indicates that data are not normally distributed, 
it may be necessary to transform the data to meet the normality assumption. 

BOTH, THE NORMALITY TESTS AND THE DATA TRANSFORMATION CAN BE EASILY 
PERFORMED USING ANY COMMERCIAL OR OPEN SOURCE STATISTICAL TOOL (R, 
SPSS, MINITAB...)

 
The main steps for the multiple linear regression analysis are shown in the Figure 
6.10.  

FIGURE 6.10  WORKFLOW FOR REGRESSION KRIGING
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• THE FIRST STEP IS TO PREPARE A MAP SHOWING THE SPATIAL DISTRIBUTION 
OF THE SAMPLE LOCATIONS AND THE CORRESPONDING SOIL PROPERTY 
INFORMATION, E.G. SOIL ORGANIC MATTER AND ENVIRONMENTAL 
PROPERTIES. THE FIRST CAN BE ACHIEVED AS OUTLINED IN SECTION 4.1. THE 
OVERLAYING OPERATION CAN BE PERFORMED IN R, ARCGIS, SAGA GIS OR 
QGIS. 

• THE ESSENTIAL PART OF MULTIPLE REGRESSION ANALYSIS IS TO BUILD A 
REGRESSION MODEL BY USING THE ENVIRONMENTAL PREDICTORS. AFTER 
EXTRACTING THE VALUES OF EXPLANATORY MAPS AND TARGET VARIABLES 
INTO THE SINGLE TABLE, WE CAN NOW START FITTING MULTIPLE REGRESSION 
MODEL USING THE TABLE THAT CONTAINS DATA FROM DEPENDENT VARIABLE 
AND PREDICTORS.

• IN PARTICULAR CASES, STEPWISE MULTIPLE LINEAR REGRESSION (SMLR) CAN 
BE USED TO ELIMINATE INSIGNIFICANT PREDICTORS. STEPWISE MULTIPLE 
LINEAR REGRESSION (SMLR) USUALLY SELECTS PREDICTORS THAT HAVE THE 
STRONGEST LINEAR CORRELATIONS WITH THE TARGET VARIABLE, WHICH 
REFLECT THE HIGHEST PREDICTIVE CAPACITY.

• KRIGING OF THE RESIDUALS (PREDICTION ERRORS): IN THE REGRESSION-
KRIGING, THE REGRESSION MODEL DETRENDS THE DATA, PRODUCES 
THE RESIDUALS WHICH WE NEED TO KRIGE AND TO BE ADDED TO THE 
REGRESSION MODEL PREDICTIONS.
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6.2.7 INTERPRET THE KEY RESULTS OF MULTIPLE REGRESSION

Regression analysis generates an equation to describe the statistical relationship 
between one or more predictor variables and the response variable. he r-squared, 
p-values and coefficients that appear in the output for linear regression analysis must 
also be reviewed. Before accepting the result of a linear regression it is important to 
evaluate its suitability at explaining the data. One of the many ways to do this is to 
visually examine the residuals. If the model is appropriate, then the residual errors 
should be random and normally distributed. 

R-sq
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R2 is the percentage of variation in the response that is explained by the model. The 
higher the R2 Value, the better the model fits your data. R-squared is always between 
0% and 100%. R2 usually increases when additional predictors are added in the 
model. 

P Values

To determine whether the association between the dependent and each predictor 
in the model is statistically significant, compare the p-value for the term to your 
significance level to assess the null hypothesis. Usually, a significance level of 0.05 
works well.

P-value ≤ significance level: The relationship is statistically significant. If the p-value is 
less than or equal to the significance level, we can conclude that there is a statistically 
significant relationship between the dependent variable and the predictor.

P-value > significance level: The relationship is not statistically significant, If the p-value 
is greater than the significance level, you cannot conclude that there is a statistically 
significant relationship between the dependent variable and the predictor. You may 
want to refit the model without the predictor.

Residuals

We can plot the residuals which can help us determine whether the model is adequate 
and meets the assumptions of the analysis. If the model is appropriate, then the 
residual errors should be random and normally distributed. We can plot residuals 
versus fits to verify the assumption that the residuals are randomly distributed and 
have constant variance. Ideally, the points should fall randomly on both sides of “0”, 
with no recognizable patterns in the points.

The diagnostic plots for the model should be evaluated to confirm if all the assumptions 
of linear regression are met.  After the abovementioned assumptions are validated, 
we can proceed with making the prediction map using the model with significant 
predictors.
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6.2.8 USING THE RESULTS OF A REGRESSION ANALYSIS TO MAKE PREDICTIONS

The purpose of a regression analysis, of course, is to develop a model that can 
be used to make the prediction of a dependent variable. The derived regression 
equation is to be used to create the prediction map for dependent variable. 
 
Tip: Raster calculation can be easily performed using “raster” Package in R or 
ArcGIS using the ”Raster Calculator” tool (It’s called Map Algebra in the prior 
versions).

6.2.9 THE SOFTWARE

R: R and R Packages can be downloaded from https://cran.r-project.org/ 

SAGA GIS

The following modules are available for multiple regression analyses in SAGA GIS 
environment;

Multiple Linear Regression Analysis, Menu Access: Spatial and 
Geostatistics|Regression|Table

Multiple Regression Analysis (Grid/Grids), Menu Access: Spatial and 
Geostatistics|Regression

Multiple Regression Analysis (Points/Grids), Menu Access:  Spatial and 
Geostatistics|Regression

SAGA GIS is available at https://sourceforge.net/projects/saga-gis/files/ 

QGIS

The following analyses are available in QGIS; 

Multiple regression analysis (points/grids)

Multiple regression analysis (grid/grids)

QGIS is available at: http://www.qgis.org/en/site/forusers/download.html 

ArcGIS: 60 day trial can be downloaded at http://www.esri.com/software/arcgis/free-trial 
(needs registration)
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Further Reading 
 
A Practical Guide to Geostatistical Mapping of Environmental Variables (Hengl T., 
2009)

A Practical Guide to Geostatistical Mapping 2. Edition (Hengl T.,  2009)

6.2.10 EXAMPLE: REGRESSION KRIGING 

Requirements

The following are required to implement Regression Kriging in R;

1. Latest version of R software, network connection and sufficient RAM,  
storage capacity (Chapter 4)

2. Latest version of RStudio (Chapter 4)

3. R packages (sp, raster,rgdal, gstat, ithir) (Chapter 4)

4. Point Dataset ( .txt or .csv) (Chapter 2)

5. Environmental predictors (covariates) (Chapter 3)

a. Relief (e.g. DEM, Slope, TWI)

b. Organism map (e.g. land use, NDVI, land cover)

c. Climate Data (e.g. mean precipitation, mean temperature)

d. Parent material (parent material, geology)
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STEP 1: DATA PREPARATION
S T E P

Point Dataset

We previously applied spline function to produce continuous soil information to a 
given soil depth (0-30 cm) in the section 2.4. Spline function basically imports soil 
profile data (including instances where layers are not contiguous), fits it to a mass-
preserving spline and outputs attribute means for a given depth. The output file 
should contain profile id, upper (surface) and lower depth (30cm), estimated value 
for the selected soil attribute (Value) and tmse (estimated mean squared error of the 
spline). If you used the Spline Tool V2, the coordinates were not kept in the output 
file. The coordinates should be added back in the data table. You can use Profile IDs 
to add the X, Y columns back. Once your point dataset is ready, copy this table into 
your working directory as a .csv file.

FIGURE 6.11 POINT DATA
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Environmental Predictors (Covariates)

In the Chapter 3, several global and continental datasets and access information 
can be found. In addition to these datasets, numerous covariate layers have been 
prepared by ISRIC for the GSOC Map project. These are GIS raster layers of 
various biophysical earth surface properties for each country in the world. Some of 
these layers will  be used  as predictors in this section. Please download the covariates 
for your own study area from GSOCMap Data Repository 

 

STEP 2: SETTING WORKING SPACE AND INITIAL STEPS
S T E P

One of the first steps should be setting our working directory. If you read/write files 
from/ to disk, this takes place in the working directory. If we don’t set the working 
directory we could easily write files to an undesirable file location. The following 
example shows how to set the working directory in R to our  folder which contains 
data for the study area (point data, covariates).

# Set the working directory

setwd("C:/masis")

Note that we must use the forward slash / or double backslash \\ in R! Single 
backslash \ will not work. Now we can check if the working directory has been 
correctly set by using the function:

# Check the working directory

> getwd()

[1] "C:/masis"
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Now load the necessary R packages (you may need to install them onto your 
computer first):

# Install required packages if you have not installed them yet.

install.packages("raster")

install.packages("rgdal") 

install.packages("gstat")

install.packages("ithir")

# Load required packages into the current R session.

library(sp)

library(raster)

library(rgdal)

library(gstat)

library(ithir)

 

STEP 3: DATA IMPORT (POINT DATA, COVARIATES)
S T E P

Now we will import our point dataset using read.csv() function. The easiest way to 
create a data frame is to read in data from a file—this is done using the function read.
csv, which works with comma delimited files. Data can be read in from other file 
formats as well, using different functions, but read.csv is the most commonly used 
approach. R is very flexible in how it reads in data from text files (read.table, read.
csv, read.csv2, read.delim, read.delim2). Please type ?read.table() for help.
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# Import pointdata into the session and assign the object as SOC

SOC <- read.csv("pointdata/mac-soc.csv")

# first 6 rows of our SOC object

> head(SOC)

   ProfID  X  Y  SOC 

1   P1804  7498970  4542687  0.01870136

2 P2399  7537324  4570419  0.07426247

3 P1057  7549442  4648465  0.14220319

4 P2503  7532535  4569154  0.14284083

5 P1528  7616462  4637891  0.14608661

6 P2375  7538468  4574121  0.15471242

> coordinates(SOC) <- ~X + Y

# We can can use str()  for exploring the format and contents of any object created/ 

imported. 

> str(SOC)

'data.frame': 3298 obs. of  4 variables:

 $ ProfID: Factor w/ 3224 levels "P0004","P0007",..: 771 1254 478 1349 606 1232 2708 1994 605

 1790 ...

 $ X     : int  7498970 7537324 7549442 7532535 7616462 7538468 7484183 7539055 7618175

 7539066 ...

 $ Y     : int  4542687 4570419 4648465 4569154 4637891 4574121 4556353 4538723 4637229

 4561478 ...

 $ SOC   : num  0.0187 0.0743 0.1422 0.1428 0.1461 ...

Since we will be working with spatial data we need to define the coordinates for the 
imported data. Using the coordinates()  function from the sp package we can define 
the columns in the data frame to refer to spatial coordinates—here the coordinates 
are listed in columns X and Y.
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> coordinates(SOC) <- ~X + Y

> str(SOC)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

  ..@ data       :'data.frame': 2308 obs. of  2 variables:

  .. ..$ ProfID: Factor w/ 3224 levels "P0004","P0007",..: 1037 770 1301 2162 1769 2127 1754

 2667 208 1327 ...

  .. ..$ SOC   : num [1:2308] 2.655 1.246 0.713 0.997 0.875 ...

  ..@ coords.nrs : int [1:2] 2 3

  ..@ coords     : num [1:2308, 1:2] 7531078 7498201 7529385 7533904 7538405 ...

  .. ..- attr(*, "dimnames")=List of 2

  .. .. ..$ : chr [1:2308] "2701" "1240" "335" "803" ...

  .. .. ..$ : chr [1:2] "X" "Y"

  ..@ bbox       : num [1:2, 1:2] 7455723 4526565 7665953 4691342

  .. ..- attr(*, "dimnames")=List of 2

  .. .. ..$ : chr [1:2] "X" "Y"

  .. .. ..$ : chr [1:2] "min" "max"

  ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

  .. .. ..@ projargs: chr NA

SpatialPointsDataFrame structure is essentially the same data frame, except that 
additional “spatial” elements have been added or partitioned into slots. Some 
important ones being the bounding box (sort of like the spatial extent of the data), 
and the coordinate reference system proj4string(), which we need to define for the 
sample dataset. To define the CRS, we must know where our data are from, and 
what was the corresponding CRS used when recording the spatial information in the 
field. For this data set the CRS used was: Macedonia_State_Coordinate_System_
zone_7  (EPSG:6316). 

To clearly tell R this information we define the CRS which describes a reference 
system in a way understood by the PROJ.4 projection library http://trac.osgeo.org/
proj/. An interface to the PROJ.4 library is available in the rgdal package. Alternative 
to using Proj4 character strings, we can use the corresponding yet simpler EPSG 
code (European Petroleum Survey Group). rgdal also recognizes these codes. If you 
are unsure of the Proj4 or EPSG code for the spatial data that you have, but know 
the CRS, you should consult http://spatialreference.org/ for assistance.

Please also note that, when working with spatial data, it’s very important that the 
CRS (coordinate reference system) of the point data and covariates are the same.
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Now, we will define our CRS;

> proj4string(SOC) <- CRS("+init=epsg:6316")

> str(SOC)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

  ..@ data       :'data.frame': 2308 obs. of  2 variables:

  .. ..$ ProfID: Factor w/ 3224 levels "P0004","P0007",..: 1037 770 1301 2162 1769 2127 1754

 2667 208 1327 ...

  .. ..$ SOC   : num [1:2308] 2.655 1.246 0.713 0.997 0.875 ...

  ..@ coords.nrs : int [1:2] 2 3

  ..@ coords     : num [1:2308, 1:2] 7531078 7498201 7529385 7533904 7538405 ...

  .. ..- attr(*, "dimnames")=List of 2

  .. .. ..$ : chr [1:2308] "2701" "1240" "335" "803" ...

  .. .. ..$ : chr [1:2] "X" "Y"

  ..@ bbox       : num [1:2, 1:2] 7455723 4526565 7665953 4691342

  .. ..- attr(*, "dimnames")=List of 2

  .. .. ..$ : chr [1:2] "X" "Y"

  .. .. ..$ : chr [1:2] "min" "max"

  ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

  .. .. ..@ projargs: chr "+init=epsg:6316 +proj=tmerc +lat_0=0 +lon_0=21 +k=0.9999

 +x_0=7500000 +y_0=0 +ellps=bessel +towgs84=682,-203,480,0,0,0,0 +units"| __truncated__

Now we will import the covariates. When the covariate layers are in common 
resolution and extent, rather than working with individual rasters it is better to stack 
them all into a single R object. We will use stack() function from raster package. In 
this example we use 12 covariates from the GSOCMap Data Repository.

> Covariates <- list.files(path = "c:/masis/cov/", pattern = "\\.tif$", full.names = TRUE)

> Covariates

 [1] "c:/masis/cov/DEMENV5.tif" "c:/masis/cov/EX1MOD5.tif"

 [3] "c:/masis/cov/EX2MOD5.tif" "c:/masis/cov/EX3MOD5.tif"

 [5] "c:/masis/cov/EX4MOD5.tif" "c:/masis/cov/EX5MOD5.tif"

 [7] "c:/masis/cov/EX6MOD5.tif" "c:/masis/cov/P01CHE3.tif"

 [9] "c:/masis/cov/P02CHE3.tif" "c:/masis/cov/P03CHE3.tif"

[11] "c:/masis/cov/P04CHE3.tif" "c:/masis/cov/P05CHE3.tif"

[13] "c:/masis/cov/P06CHE3.tif" "c:/masis/cov/P07CHE3.tif"

[15] "c:/masis/cov/P08CHE3.tif" "c:/masis/cov/P09CHE3.tif"

[17] "c:/masis/cov/P10CHE3.tif" "c:/masis/cov/P11CHE3.tif"

[19] "c:/masis/cov/P12CHE3.tif" "c:/masis/cov/PRSCHE3.tif"

[21] "c:/masis/cov/SLPMRG5.tif" "c:/masis/cov/TMDMOD3.tif"

[23] "c:/masis/cov/TMNMOD3.tif" "c:/masis/cov/TWIMRG5.tif"

Now we can stack covariates into an object;

covStack <- stack(Covariates)
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In order to carry out digital soil mapping in terms of examining the statistical 
significance of  environmental predictors for explaining the spatial variation of soil 
organic carbon, we should link both sets of data together and extract the values of 
the covariates at the locations of the soil point data. Note that the stacking of rasters 
can only be possible if they are in the same resolution and extent. If they are not,  
raster package resample and projectRaster functions are for harmonising all your 
different raster layers. With the stacked  rasters (Covstack), we can now perform 
the intersection and extraction.

DSM_data <- extract(covStack, SOC, sp = 1,method = "simple")

> DSM_data <- as.data.frame(DSM_data)

> str(DSM_data)

'data.frame': 3298 obs. of  28 variables:

 $ ProfID : Factor w/ 3224 levels "P0004","P0007",..: 771 1254 478 1349 606 1232 2708 1994 605

 1790 ...

 $ SOC    : num  0.0187 0.0743 0.1422 0.1428 0.1461 ...

 $ DEMENV5: num  852 626 224 591 315 610 714 572 320 590 ...

 $ EX1MOD5: num  1565 1747 1870 1228 1555 ...

 $ EX2MOD5: num  2745 3680 3663 3163 3553 ...

 $ EX3MOD5: num  4229 4041 4205 3940 4356 ...

 $ EX4MOD5: num  2652 2856 3747 3395 4540 ...

 $ EX5MOD5: num  2485 2741 2695 2932 3586 ...

 $ EX6MOD5: num  2366 2181 1704 1796 1939 ...

 $ P01CHE3: num  59.7 48.6 35.6 44.5 31.4 ...

 $ P02CHE3: num  56.2 47 35.6 44.1 32.7 ...

 $ P03CHE3: num  53.1 47 36.3 42.1 32.1 ...

 $ P04CHE3: num  57.2 53 44.8 47.6 40.4 ...

 $ P05CHE3: num  50.6 58.3 50 49.9 47.7 ...

 $ P06CHE3: num  30.8 42.8 43.3 34.8 43 ...

 $ P07CHE3: num  26 34.7 32 30.2 30.9 ...

 $ P08CHE3: num  25.9 33.1 30 28.7 31.1 ...

 $ P09CHE3: num  45.2 44.7 37.4 39.9 31.7 ...

 $ P10CHE3: num  74.7 62.6 48.8 59.8 41.1 ...

 $ P11CHE3: num  93.1 72.2 56.6 70.4 42.9 ...

 $ P12CHE3: num  82.3 67.2 51.6 62.5 45.3 ...

 $ PRSCHE3: num  655 611 502 554 450 ...

 $ SLPMRG5: num  0 9 0 0 1 1 1 0 0 0 ...

 $ TMDMOD3: num  291 294 293 293 293 294 292 294 293 294 ...

 $ TMNMOD3: num  278 279 280 279 280 279 280 279 280 279 ...

 $ TWIMRG5: num  97 107 118 110 104 101 92 115 99 103 ...

 $ X      : num  21 21.4 21.6 21.4 22.4 ...

 $ Y      : num  41 41.3 42 41.3 41.9 …
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It would be better to progress with a data frame of just the data and covariates 
required for the modelling. In this case, we will subset the columns SOC, the 
covariates and the the spatial coordinates (X and Y).

> DSM_data <- DSM_data[, c(2:28)]

After the extraction, It's useful to check if there are missing values (NAs) both in 
the target variable and covariates.  In these cases, these data should be excluded. 
A quick way to assess if there are missing or NA values in the data is to use the 
complete.cases() function.

> which(!complete.cases(DSM_data))

[1] 1693 2196 2328 2460 2643 2747

> DSM_data <- DSM_data[complete.cases(DSM_data), ]

> which(!complete.cases(DSM_data))

integer(0)

After removing NAs now there do not appear to be any missing data as indicated by 
the integer(0) output above. It means we have zero rows with missing information.

 

STEP 4: FITTING THE MLR MODEL
S T E P

Fitting the MLR Model

Let’s fit a linear model using with all available covariates.

> MLR.Full <- lm(SOC ~ DEMENV5+EX1MOD5+EX2MOD5+EX3MOD5+EX4MOD5+EX5MOD5+EX6MOD5+

P01CHE3+P02CHE3+P03CHE3+P04CHE3+P05CHE3+P06CHE3+P07CHE3+P08CHE3+P09CHE3+P10CHE3+

P11CHE3+P12CHE3+PRSCHE3+SLPMRG5+TMDMOD3+TMNMOD3+TWIMRG5, data = DSM_data)

> summary(MLR.Full)

Call:

lm(formula = SOC ~ DEMENV5 + EX1MOD5 + EX2MOD5 + EX3MOD5 + EX4MOD5 + 

    EX5MOD5 + EX6MOD5 + P01CHE3 + P02CHE3 + P03CHE3 + P04CHE3 + 

    P05CHE3 + P06CHE3 + P07CHE3 + P08CHE3 + P09CHE3 + P10CHE3 + 

    P11CHE3 + P12CHE3 + PRSCHE3 + SLPMRG5 + TMDMOD3 + TMNMOD3 + 

    TWIMRG5, data = DSM_data)
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Residuals:

   Min     1Q Median     3Q    Max 

-3.820 -0.672 -0.182  0.418 47.116 

Coefficients:

              Estimate Std. Error t value Pr(>|t|)    

(Intercept)  2.139e+01  1.884e+01   1.135  0.25640    

DEMENV5      2.932e-04  4.417e-04   0.664  0.50692    

EX1MOD5     -1.437e-04  1.298e-04  -1.107  0.26845    

EX2MOD5     -9.832e-05  8.395e-05  -1.171  0.24165    

EX3MOD5      2.160e-04  7.195e-05   3.002  0.00270 ** 

EX4MOD5      5.510e-04  9.026e-05   6.104 1.15e-09 ***

EX5MOD5     -6.156e-04  1.210e-04  -5.086 3.87e-07 ***

EX6MOD5      2.377e-04  1.296e-04   1.834  0.06670 .  

P01CHE3     -1.243e-01  5.235e-01  -0.237  0.81238    

P02CHE3      3.139e-02  5.159e-01   0.061  0.95149    

P03CHE3      3.151e-02  5.139e-01   0.061  0.95110    

P04CHE3     -2.486e-03  5.195e-01  -0.005  0.99618    

P05CHE3      4.119e-02  5.191e-01   0.079  0.93675    

P06CHE3     -8.796e-03  5.156e-01  -0.017  0.98639    

P07CHE3      1.904e-01  5.119e-01   0.372  0.70989    

P08CHE3     -2.415e-01  5.275e-01  -0.458  0.64704    

P09CHE3      1.088e-01  5.196e-01   0.209  0.83418    

P10CHE3     -7.561e-02  5.158e-01  -0.147  0.88347    

P11CHE3      1.015e-02  5.205e-01   0.020  0.98444    

P12CHE3      7.301e-02  5.148e-01   0.142  0.88724    

PRSCHE3     -3.012e-03  5.170e-01  -0.006  0.99535    

SLPMRG5      2.699e-03  5.789e-03   0.466  0.64116    

TMDMOD3     -1.013e-01  3.606e-02  -2.810  0.00498 ** 

TMNMOD3      2.548e-02  5.175e-02   0.492  0.62254    

TWIMRG5      5.749e-03  4.560e-03   1.261  0.20748    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.874 on 3267 degrees of freedom

Multiple R-squared:  0.1845, Adjusted R-squared:  0.1785 

F-statistic: 30.79 on 24 and 3267 DF,  p-value: < 2.2e-16

From the summary of our fill model (MRL.full) above, it seems only a few of the 
covariates are significant in describing the spatial variation of the target variable. 
To determine the most predictive model we can run a stepwise regression using the 
step() function. With this function we can also specify the directions that we want 
to step.
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> MLR.Step <- step(MLR.Full, trace = 0, direction="both")

> summary(MLR.Step)

Call:

lm(formula = SOC ~ EX1MOD5 + EX3MOD5 + EX4MOD5 + EX5MOD5 + EX6MOD5 + 

    P01CHE3 + P02CHE3 + P05CHE3 + P07CHE3 + P08CHE3 + P09CHE3 + 

    P10CHE3 + P12CHE3 + TMDMOD3, data = DSM_data)

Residuals:

   Min     1Q Median     3Q    Max 

-3.680 -0.673 -0.184  0.421 47.063 

Coefficients:

              Estimate Std. Error t value Pr(>|t|)    

(Intercept)  3.394e+01  7.687e+00   4.416 1.04e-05 ***

EX1MOD5     -2.021e-04  1.166e-04  -1.734 0.083041 .  

EX3MOD5      1.831e-04  6.171e-05   2.967 0.003033 ** 

EX4MOD5      5.700e-04  8.709e-05   6.545 6.89e-11 ***

EX5MOD5     -6.191e-04  1.179e-04  -5.253 1.59e-07 ***

EX6MOD5      1.921e-04  1.126e-04   1.706 0.088018 .  

P01CHE3     -1.021e-01  3.021e-02  -3.379 0.000735 ***

P02CHE3      4.224e-02  2.173e-02   1.944 0.052039 .  

P05CHE3      4.298e-02  1.065e-02   4.034 5.60e-05 ***

P07CHE3      1.774e-01  3.017e-02   5.882 4.47e-09 ***

P08CHE3     -2.564e-01  3.609e-02  -7.104 1.49e-12 ***

P09CHE3      1.051e-01  2.123e-02   4.948 7.86e-07 ***

P10CHE3     -6.325e-02  1.739e-02  -3.638 0.000279 ***

P12CHE3      5.390e-02  2.663e-02   2.024 0.043083 *  

TMDMOD3     -1.182e-01  2.511e-02  -4.706 2.64e-06 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.873 on 3277 degrees of freedom

Multiple R-squared:  0.1836, Adjusted R-squared:  0.1801 

F-statistic: 52.63 on 14 and 3277 DF,  p-value: < 2.2e-16
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Now we can evaluate the test statistics of the calibration model using the goof() 
function from the  “ithir” package.

> MLR.pred.rhC <- predict(MLR.rh, DSM_data[training, ])

> MLR.pred.rhV <- predict(MLR.rh, DSM_data[-training, ])

> goof(observed = DSM_data$SOC[training], predicted= MLR.pred.rhC)

         R2 concordance      MSE     RMSE          bias

1 0.1738919   0.2966572 4.029811 2.007439 -1.019185e-13

> goof(observed = DSM_data$SOC[-training], predicted= MLR.pred.rhV)

         R2 concordance      MSE     RMSE      bias

1 0.2205209   0.3955953 2.255178 1.501725 0.0857483

 

STEP 5: PREDICTION AND RESIDUAL KRIGING
S T E P

Now we can make the predictions and plot the map. We can use either our DSM_
data table for covariate values or covStack object for making our prediction. Using 
stack avoids the step of arranging all covariates into table format. If multiple rasters 
are being used, it is necessary to have them arranged as a rasterStack object. This 
is useful as it also ensures all the rasters are of the same extent and resolution. Here 
we can use the raster predict function such as below using the covStack raster stack 
as we created  in the Step 3.

> par(mfrow = c(3, 1))

> map.MLR.r.pred <- predict(covStack, MLR.rh, "SOC_030cm_MLR_pred.tif",

format = "GTiff", datatype = "FLT4S", overwrite = TRUE)

> plot(map.MLR.r.pred, main = "MLR predicted SOC Map of Macedonia") #Figure 6.12

 

 
FIGURE 6.12 MULTIPLE LINEAR REGRESSION PREDICTED SOC MAP
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Residual Kriging

Now, we can derive the model residual which is the model prediction subtracted 
from the residual.

> Mdata <- DSMTable[training, ]

> Mdata$residual <- Mdata$SOC - predict(Model.1.Stepwise, newdata = Mdata)

> mean(Mdata$residual)

[1] -0.3364321

> map.RK2 <- interpolate(covStack, gRK, xyOnly = TRUE, index = 1,filename

= "SOC0-30cm_residualRK.tif", format = "GTiff",datatype = "FLT4S",

overwrite = TRUE)

[using ordinary kriging]

> map.RK1 <- map.MLR.r.pred

> map.RK2 <- interpolate(covStack, gRK, xyOnly = TRUE, index = 1,filename

= "SOC0-30cm_residualRK.tif", format = "GTiff",datatype = "FLT4S",

overwrite = TRUE)

[using ordinary kriging]

> 

> pred.stack <- stack(map.RK1, map.RK2)

Error in compareRaster(x) : different CRS

> proj4string(map.RK1) <- CRS("+init=epsg:6316")

> pred.stack <- stack(map.RK1, map.RK2)

> map.RK3 <- calc(pred.stack, fun = sum,filename = "Macedonia SOC Final

Map", format = "GTiff", progress = "text", overwrite = T)

> par(mfrow = c(3, 1))

> plot(map.RK2, main = "Kriged residual")

> plot(map.RK1, main = "Regression Map")

> plot(map.RK3, main = "Macedonia SOC Map 0-30cm") 

#Figure 6.13
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FIGURE 6.13 MLR PREDICTED SOC MAP, RESIDUAL MAP AND FINAL SOC MAP
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6.3. DATA MINING: RANDOM FOREST

6.3.1 OVERVIEW

Random forest is a type of machine learning for uncovering statistical relationship 
between a dependent variable (e.g. soil property) and its predictors. It belongs to 
the decision-tree class of models in which the models (also known as classifiers) 
are like trees with stem, many branches, and leaves. The leaves are the prediction 
outcomes (final decisions) that flow from the roots through the stem to the branches 
(Breiman et al., 1984). The decision tree model recursively splits the data into final 
uniform groups (classes) or unique values based on a set of rules. In random forest, 
there are many decision trees and each tree recursively splits randomly selected sub-
samples from the data (Figure 6.14). The name random forest originates from the 
fact that the original data is first randomly split into sub-samples, and many decision 
trees (or forest) are used to model the sub-samples. 

FIGURE 6.14 THE CONCEPT OF RANDOM FOREST AND DECISION TREES

Random forest has been tested by many researchers in digital soil mapping (see 
for example Poggio et al., 2013; Pahlavan Rad et al., 2014, and references therein). 
Specifically in soil carbon mapping, there are authors who have shown that 
it holds a lot of promise when compared to other prediction models. They have 
demonstrated that it has a relatively improved accurate spatial prediction, is a 
better approach to dealing with model over-fitting and data noise, and is capable 
of handling both dimensionally linear and nonlinear relationships (Wiesmeier 
et al., 2011). Furthermore, with the advent of open-source platforms and freely 
downloadable ancillary data, the application of random forest and other such models 
has increasingly become more appealing in digital soil mapping. 
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The objective of this chapter is to demonstrate how random forest can be implemented 
in freely downloadable R software for spatial prediction of soil organic carbon. The 
R package of random forest, known as randomForest, was used (Breiman and Cutler, 
2017).   

6.3.2 REQUIREMENTS

The following are required to implement the Random Forest modelling of SOC in 
R:

1. R packages (randomForest,ggplot2, fBasics, nortest, car, sp, rgdal, Hmisc) 

2. Georeferenced SOC data (in spreadsheet or GIS database)

3. Georeferenced spatial predictors (covariates)

a. Relief map (e.g. DEM, landform)

b. Organism map (e.g. land use, NDVI, land cover)

c. Climate map (e.g. mean precipitation, mean temperature)

d. Parent material (e.g. geology)

4. Latest version of R software and sufficient RAM and HDD storage 
capacity

5. Latest version of RStudio (optional but important) 

6.3.3 EXAMPLE: RANDOM FOREST

STEP 1: DATA PREPARATION
S T E P

The following sample data demonstrate the data requirement characteristics and 
application of random forest in mapping SOC (Figure 6.15) The soil data was 
obtained from a study of SOC in north-eastern Kenya. The data was collected using 
a Y-shape sampling frame (Omuto, 2008) for topsoil (0-30 cm) (Figure 6.16).
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FIGURE 6.15 EXAMPLE COVARIATES FOR MAPPING SOC 

FIGURE 6.16 LOCATION OF SAMPLE DATASET AND SPATIAL DISTRIBUTION OF ITS SOC VALUES
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The following table shows how the data should be arranged in the spreadsheet 
database such as MS Excel or Arc-Shapefile. Note that the first row should contain 
the header with names for the columns. Although the database can have many 
columns, the necessary columns are: Sample name, spatial coordinates (latitudes 
and longitudes), and the SOC values. In the example in the Figure 6.17, the three 
columns are Sample (for sample name), X (for longitude), Y (for latitude), and SOC 
(for SOC values in g/kg). This data can be saved as text file (such as Tab delimited 
or CSV text file) in MS Excel or it can be a GIS vector data (such as shapefile). The 
illustration given in this chapter uses Tab delimited text-file (in which the saved data 
is denoted as SOC.txt).

FIGURE 6.17  ARRANGEMENT OF SOC SOIL DATA IN SPREADSHEET DATABASE

6.3.4 TECHNICAL STEPS

The following scripts and steps are used for implementing Random Forest approach in R. 

STEP 2: SET THE WORKING DIRECTORY
S T E P

>setwd("C:/DSM/soildata")
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This first step is important for creating the path to the working directory where the 
data is stored. It’s important to note the single-forward-slash between the directory 
path items. In the next step, the R packages for data exploration are supposed to 
have been installed in R (from CRAN repository) before loading them.

STEP 3: LOAD THE LIBRARIES FOR IMPORTING
S T E P

library(ggplot2)

library(fBasics)

library(nortest)

library(car)

In case the libraries are not yet installed in the R environment, this can be done from 
R-Studio as shown in Figure 6.18 Internet connectivity is required to download the 
packages.

 

FIGURE 6.18  INSTALLING R PACKAGES IN RSTUDIO ENVIRONMENT
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STEP 4: EXPLORE THE DATA
S T E P

>soildata=read.table("soc.txt",header=T)

>summary(soildata)

 Sample  X  Y   SOC

1st Qu.: 22.75  1st Qu.:313500 1st Qu. :9823827 1st Qu. :0.2759

Median: 100.50 Median :327265 Median :9837261 Median :0.3181

Mean : 93.39  Mean   :326966 Mean :9835610 Mean :0.3152

3rd Qu. : 150.25 3rd Qu.:341500 3rd Qu. :9846690 3rd Qu. :0.3703

Max. : 180.00  Max.   :347178 Max. :9852724 Max. :0.3967

>hist(soildata$SOC, breaks = 10)#Figure 6.17a

>qqnorm(soildata$SOC, plot.it = T)#Figure 6.17b

>qqline(soildata$SOC,col="red")

>ggplot(soildata, aes(x = X, y = Y)) + geom_point(aes(size = soildata$SOC))

>sampleSKEW(soildata$SOC)#Coefficient of skew

   SKEW 

0.1052213

>sampleKURT(soildata$SOC)#Kurtosis

   KURT

1.101113

>ad.test(soildata$SOC)#Anderson-Darling Test

Anderson-Darling normality test

data:  soildata$SOC

A = 1.6854, p-value = 0.0002298

FIGURE 6.19  HISTOGRAM AND QQ-PLOT OF SOC DATA
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The exploratory analysis of the data showed that Soil Organic Content (g/kg) is not 
normally distributed (Anderson-Darling test<0.05), positively skewed (Skew>0) 
and has a high degree of peakedness (Kurtosis > 1). Furthermore, the data has 
high values in the northeast corner and low values in the western side; giving 
the impression of west-northeast low-high pattern (Figure 6.5). In general, the 
exploratory data analysis shows that the data need transformation to normalize it 
before subjecting it to spatial modelling. The Box-Cox transformation (Box-Cox, 
1964), can be used to transform the data in the next step.

STEP 5: TRANSFORM THE DATA USING BOX-COX TRANSFORMATION
S T E P

>soildata$SOCT=(soildata$SOC^(as.numeric(powerTransform(soildata$SOC,

family ="bcPower")["lambda"]))-

1)/(as.numeric(powerTransform(soildata$SOC, family

="bcPower")["lambda"]))

>hist(soildata$SOCT,breaks = 15)# Figure 6.20b

 

FIGURE 6.20 HISTOGRAM OF RAW AND TRANSFORMED SOC

 
The spatial covariates for mapping soil data need also to be loaded into R and 
aligned with the soil data. According Jenny (1941) and McBratney et al. (2003), 
the covariates for mapping are the following soil forming factors: other available 
and correlated soil properties, climate data, land use/cover, relief, spatial reference, 
and geology. Many researchers have used varied forms and combinations of these 
soil forming factors to predict soil organic carbon. For example, Grimm et al. (2008) 
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used relief attributes (curvature, topographic wetness index, slope, aspect, etc.), soil 
attributes (colour and texture), forest history, and geology to predict soil carbon 
concentrations in Barro Colorado Island in Panama. Adhikari et al. (2014) used 
relief attributes (elevation, topographic wetness index, and valley bottom flatness), 
precipitation, land use, soil type, and wetlands to predict soil organic carbon in 
Denmark. In the present example, the following covariates were used: landform, 
rainfall, Normalized Difference Vegetation Index (NDVI), elevation, and spatial 
coordinates (latitudes and longitudes). These covariates we resampled to 250 m 
spatial resolution. The following step shows how these covariates are imported into 
R and aligned with the soil data. The R packages for spatial data have the facility 
for specifying the projection of the GIS data. This projection is used to align the 
datasets and it has to be known a priori. QGIS software (http://qgis.org/) can be 
used to obtain this information in case it is not readily known. 

 STEP 6. DATA PROCESSING

S T E P

>library(sp)

>library(rgdal)

> library(Hmisc)

>predictors=readGDAL("dem.asc")

>predictors$landform=readGDAL("landform.asc")$band1

>predictors$rain=readGDAL("rain.asc")$band1

>predictors$latitude=readGDAL("latitude.asc")$band1

>predictors$ndvi=readGDAL("ndvi.asc")$band1

>predictors$longitude=readGDAL("longitude.asc")$band1

>predictors$dem=predictors$band1

>predictors$band1=NULL

>proj4string(predictors)=CRS("+proj=utm +zone=37 +south +datum=WGS84+units=m +no_defs")

>coordinates(soildata)=~X+Y

>proj4string(soildata)=CRS("+proj=utm +zone=37 +south +datum=WGS84 +units=m +no_defs")

>predictors.ov=over(soildata, predictors)

>soildata$dem=predictors.ov$dem

>soildata$ndvi=predictors.ov$ndvi

>soildata$rain=predictors.ov$rain

>soildata$longitude=predictors.ov$longitude

>soildata$latitude=predictors.ov$latitude

>soildata$landform=predictors.ov$landform

>SOCT.histbb=histbackback(soildata$landform, predictors$landform, prob=TRUE)#Figure 6.21
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FIGURE 6.21  HISTOGRAM REPRESENTATION OF SAMPLED AND POPULATION CHARACTERISTICS

Apart from seeing that the sample locations are evenly distributed in the study area, 
it could also be important to assess how the points are distributed in the feature space 
of each covariate (e.g. landform feature space in Figure 6.10). If the distribution is 
not even or uniform then potential errors could arise and hamper the model training. 
Nothing much can be done to increase the number of samples in each feature space 
if the cost of adding more samples is inconceivable at this stage. However, it’s 
important to note how this facility can be used to plan sampling in DSM.

While building the random forest models, if it’s necessary to assess the predictive 
performance of the model, one do so using by splitting the data into two: a hold-
out sample spart on which to build the model and the other part for model testing. 
After testing the model and accepting the achieved accuracy level, it’s important to 
develop a final model using the whole data (NB: refer to the validation section of 
this cookbook for more in-depth discussions). In the following scripts, we use the 
sample function to randomly split the data into two parts: training and testing parts. 
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STEP 7: SPLITTING THE SOIL DATA FOR MODEL TESTING AND TRAINING AND 
SUBSEQUENT PERFORMANCE EVALUATION.

S T E P

>library(randomForest)

>training <- sample(nrow(soildata), 0.66 * nrow(soildata))#randomly split the data

>mod1.rf=randomForest(SOCT~landform+dem+ndvi+rain+longitude+latitude,

data=soildata[training,], importance=TRUE, ntree=500)

>print(mod1.rf)

Call:

 randomForest(formula = SOCT ~ landform + dem + ndvi + rain +

  longitude + latitude, data = soildata[training, ], importance =TRUE,

   ntree = 500)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 2

Mean of squared residuals: 3.177888e-05

% Var explained: 88.98

>RF.predSOCT <- predict(mod1.rf, newdata = soildata[-training, ])

>RMSE.mod1 <- sqrt(mean((soildata$SOCT[-training] - RF.predSOCT)^2))

>RMSE.mod1

[1] 0.004463855

>R2.mod1 <- lm(RF.predSOCT ~ soildata$SOCT[-training])

>as.matrix(summary(R2.mod1)$adj.r.squared)

        [,1]

[1,] 0.9107788

>bias.mod1 <- mean(RF.predSOCT) - mean(soildata$SOCT[-training])

>bias.mod1

[1] -0.002577775

plot(soildata$SOCT[-training],RF.predSOCT) #Figure 6.22

abline(a=0,b=1,lty=2, col="red")# 1:1 comparison 

abline(R2.mod1, col="blue")# regression on predicted and measured values

The above results appear like the predictive performance of the random forest model 
was good. However, a closer look at the plot of predicted versus observed values 
reveal that the model over-predicted low values and under-predicted high values 
(Figure 6.22). Thus, high values and low values in the resultant map may need to be 
treated with caution.
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FIGURE 6.22  DIAGNOSTIC COMPARISON OF THE FITTED AND ACTUAL VALUES

STEP 8: SPATIAL PREDICTION OF THE SOIL ORGANIC CARBON.
S T E P

>predictors$SOCT=predict(mod1.rf,newdata=predictors)

>lmbda=(as.numeric(powerTransform(soildata$SOC, family

="bcPower")["lambda"]))

>predictors$SOCr=(predictors$SOCT*lmbda+1)^(1/lmbda)

>pred.plt=spplot(predictors["SOCr"], scales=list(draw=TRUE,cex=1))

>print(pred.plt, more=TRUE)# Figure 6.23
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FIGURE 6.23  RANDOM-FOREST PREDICTED SOC MAP 
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7.  UNCERTAINTY

 
Soil mapping involves making predictions at locations where no soil measurements 
were taken. This inevitably leads to prediction errors because soil spatial variation 
is complex and cannot be modelled perfectly. It also implies that we are uncertain 
about the true soil class or true soil property at prediction locations. We only have 
the predictions, which differ from the true values in an unpredictable way, and hence 
we are uncertain about the true value. In fact, we may even be uncertain about the 
soil at the measurement locations because no measurement method is perfect and 
uncertainty also arises from measurement errors.

 This chapter describes how uncertainty may be characterised by probability 
distributions. It also explains how the parameters of these distributions may be 
derived, leading to quantification of uncertainty. We will see that this can become 
quite complex, because soil properties vary in space and are often cross-correlated, 
which the uncertainty model must take into account. A further complication is that 
there are many different sources of uncertainty. In some cases it may be too difficult 
to arrive at a spatially explicit characterisation of uncertainty, and in such case 
statistical validation may be used to derive summary measures of the accuracy of 
soil maps. We begin this chapter with a description of uncertainty sources.

7.1 SOURCES OF UNCERTAINTY
Consider a case in which soil samples were taken from a large number of measurement 
locations in a study area, taken to the laboratory and analysed for various soil 
properties. Let us further assume that the measurement locations were indicated on 
a topographic map and that the soil was also classified at each measurement location. 
Next, the soil property and soil type observations were used to create maps of soil 
properties and soil type using digital soil mapping techniques. These techniques not 
only make use of the soil observations but also benefit from maps of environmental 
variables that are correlated with the soil, and hence help explain the soil spatial 
variation. Which sources of uncertainty contribute to uncertainty about the final soil 
maps? We distinguish four main categories.
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7.1.1 ATTRIBUTE UNCERTAINTY OF SOIL MEASUREMENTS

Soil measurements suffer from measurement errors in the field and laboratory. 
Perhaps the soil was not sampled at the right depth, perhaps the organic layer was not 
removed completely before collecting soil material, or perhaps by accident bags were 
interchanged or numbered wrongly. Field estimates of soil type and soil properties 
are also not error-free, especially when estimation is difficult, such as estimation of 
organic carbon content or texture. Field estimates may also be subjective, because 
soil scientists may be trained differently and so there may be systematic differences 
between their field estimates of soil properties. Similarly, it is also not uncommon 
for soil scientists to disagree about the soil type when classifying a soil in the field.

Laboratory analysis adds error too. Soil samples may not be perfectly mixed prior to 
taking a much smaller subsample that is actually measured; instruments have limited 
precision and may have systematic errors, climate conditions in the lab vary, and there 
can be differences between procedures used by laboratory personnel. Differences 
between laboratories are even bigger and may be of the same order of magnitude 
as the soil variation itself. It is strongly advised to always take sufficient duplicates 
and randomise the order in which soil samples are analysed in the laboratory. This 
allows to quantify the combined field and laboratory measurement errors.

7.1.2 POSITIONAL UNCERTAINTY OF SOIL MEASUREMENTS

When collecting soil data in the field we would generally note the geographic 
coordinates of the measurement locations. Nowadays this is easy with GPS 
instruments and depending on the device, modest to high positional accuracy can 
be achieved. But it may still be too large to be negligible. For instance, consider 
the case where the soil data are used to train a digital soil mapping model that 
predicts soil properties from covariates. Let these covariates be available at high 
spatial resolution and have substantial fine-scale spatial variation. Then it is clear 
that positional uncertainty in the soil measurements may link these measurements 
to the wrong covariates, which will weaken the strength of relationship between the 
soil variable and covariates and deteriorate the quality of the final soil map.

Many soil legacy data suffer from large positional uncertainty. Locations may only 
be traced from vague descriptions such as “near village A” or “east of the road from 
B to C”. In such case, researchers should consider whether using such data for 
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calibration of a DSM model and for spatial prediction using the calibrated DSM 
model is wise. It may do more harm than good. This depends on the specific DSM 
model used and the degree of spatial variation of the covariates. It also depends 
on the degree of spatial variation of the soil property itself. If it has negligible fine-
scale spatial variation and hence has similar values at the registered and actual 
geographic location, then little harm is done. For instance, in the Sahara desert 
many soil properties will show little spatial variation over distances of hundreds or 
perhaps thousands of meters, so in such case poor geographic positional accuracy 
will not seriously affect DSM predictions.

7.1.3 UNCERTAINTY IN COVARIATES

Maps of covariates that are used in DSM can also suffer from errors and uncertainties. 
For instance, a Digital Elevation Model (DEM) is a major source of geomorphological 
covariates but DEMs are only approximations of the real elevation. DEM errors 
will propagate and cause uncertainty in geomorphological properties such as slope, 
aspect and topographic wetness index. As a result, the DSM model must be trained on 
covariate data that are merely approximations of the intended covariates, which will 
generally lead to weakened relationships and larger DSM prediction errors. Land 
cover is another example; soil properties may be strongly influenced by land cover, 
but such relationship may come out quite weak if the DSM model is trained with a 
land cover map that represents land cover wrongly for a large part of the study area. 

Covariates also come in a specific spatial resolution which may be quite coarse in 
specific cases. In order to use the covariate in a fine-scale DSM model, the coarse-
scale grid cell value will be copied to all fine-scale grid cells contained in it, but 
clearly fine-scale spatial variation implies that uncertainties will be introduced. A 
possible solution might be to smooth the coarse-scale covariate prior to entering it to 
DSM calibration but clearly this will not remedy all problems.

Uncertainty in covariates leads to weaker DSM models, but this weakening is not 
hidden to the developer because the deterioration of predictive power is implicitly 
included in the DSM model. For instance, the amount of variance explained by a 
DSM model that uses the true land cover as measured on sampling sites may be 
much higher than that of a model that uses a land cover map. Users may then be 
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tempted to calibrate the DSM model with the true land cover data, but if they next 
apply that model using the land cover map to predict the soil at non-measurement 
locations they would systematically underestimate the uncertainty of the resulting 
map.

7.1.4 UNCERTAINTY IN MODELS THAT PREDICT SOIL PROPERTIES FROM 
COVARIATES AND SOIL POINT DATA

Even if the soil point data and covariate data were error-free, the resulting DSM 
predictions would still deviate from the true soil properties. This is because the 
DSM model itself also introduces uncertainties. Models are merely simplified 
representations of the real world. The real world is too complex and approximations 
are needed. For instance, even though we know that physical, chemical and 
biological processes determine the soil as given by the state equation of soil 
formation soil=f(cl,o,r,p,t), the function f is too complex to be fully understood and 
implemented in a  computer model. Instead, we use crude approximations such as 
multiple linear regression and machine-learning algorithms. These empirical models 
have the additional burden that extrapolation beyond conditions represented by the 
calibration data is difficult and risky. For extrapolation purposes it is advised to 
use DSM models that better represent the mechanisms behind soil formation, but 
again it is practically impossible to build mechanistic models that represent the real 
world perfectly. This is not only because we may not understand all processes and 
their interactions well, but also because dynamic mechanistic models need much 
information, such as the initial state, boundary conditions and driving forces. Such 
detailed information is generally lacking.

Model uncertainty is generally subdivided into model parameter uncertainty and 
model structural uncertainty. The first can be reduced by using models with fewer 
parameters or by using a larger calibration data set. The latter can be reduced by 
using a more complex model, but this will only work if there are enough data to 
calibrate such model. Thus, in general a compromise has to be sought by choosing a 
level of model complexity that matches the amount of information available.
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7.2 UNCERTAINTY AND SPATIAL DATA QUALITY
Research into spatial accuracy in Geographic Information Science has listed five 
main elements of spatial data quality:

1. lineage

2. positional accuracy

3. attribute accuracy

4. logical consistency

5. completeness

We have already discussed positional and attribute accuracy. Lineage refers to 
documenting the original sources for the data and the processing steps. This 
is strongly related to the principle of reproducible research. Logical consistency 
addresses whether there are any contradictory relationships in the database. For 
instance, it checks whether all data have the same geographic projection and that 
measurement units are consistent. Completeness refers to whether there are any 
missing data. For instance, covariate maps must cover the entire study area if they 
are to be used as explanatory variables in a DSM model. Soil profile data need not 
capture all relevant soil properties and tend to have fewer soil measurements at 
greater depths.

In summary, there are many sources of uncertainty that affect the quality of DSM 
products. This section has reviewed these sources but was purposely descriptive. The 
next section selects a few major uncertainty sources and works out quantitatively 
how these cause uncertainty in the resulting soil map. Perhaps it is useful to mention 
that focussing attention on errors and uncertainties may give the wrong impression 
that soil maps are generally inaccurate and of poor quality. This is not the message 
that we wish to convey here. But producers and users of soil maps should be aware 
of the sources of uncertainty and should ideally identify how these uncertainties 
affect the final product. Thus, quantification of the uncertainty in DSM maps, be it 
through explicit modelling or independent validation is important.
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7.3 QUANTIFYING PREDICTION UNCERTAINTY
Uncertainties in soil measurements, covariates and DSM models propagate to 
resulting soil maps. The uncertainty propagation can fairly easily be traced provided 
that the uncertainty sources are characterised adequately. The most appropriate way 
of doing that is by making use of statistics and probability distributions. This section 
also takes that approach and starts by providing a brief overview of probability 
distributions and how these may be used to represent uncertainty. Next it analyses 
how the four sources of uncertainty distinguished in Section 5.1 lead to uncertainty 
in soil maps produced using DSM.

7.3.1 UNCERTAINTY CHARACTERISED BY PROBABILITY DISTRIBUTIONS

If we are uncertain about the value of a soil property at some location and depth this 
means that we cannot identify one single, true value for that soil property (Goovaerts 
2001, Heuvelink 2014). Instead, we may be able to provide a list of all possible 
values for it and attach a probability to each. In other words, we represent the true 
but unknown soil property by a probability distribution. For instance, suppose that 
we estimate the sand content of a soil sample in the field as 35%, while recognising 
that a field estimate is quite crude and that the true sand content may very well be 
less or more than the estimated 35%. We might be confident that the estimation error 
is unlikely to be greater than 8%, and hence it would be reasonable to represent the 
sand content by a normal distribution with a mean of 35% and a standard deviation 
of 4%. For the normal distribution, 95% of the probability mass lies within two 
standard deviations from the mean, so we would claim that there is a 5% probability 
that the sand content is smaller than 27% or greater than 43%.

In the example above we had chosen the normal distribution because it is the most 
common probability distribution but we might as well have used a different distribution, 
such as the uniform or lognormal distribution. Indeed many soil properties, such as 
soil nutrient concentrations are better described by lognormal distributions, because 
values below zero cannot occur and because very high positive values (i.e. outliers) 
are not unlikely. For instance, we may estimate the organic carbon concentration 
(OC) of a soil sample as 1.2% and identify with it an asymmetric 95% credibility 
interval ranging from 0.8% to 2.5%. In general, statistical modelling is easier if the 
variables under study can be described by normal distributions. This explains why 
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we usually apply a transformation to skewed variables prior to statistical modelling. 
For instance, when building a DSM model of OC, it may be wise to develop such 
model for the logarithm of OC and do a back-transform on the DSM predictions.

There are many different soil properties that in addition vary in space and possibly 
time. Thus, the characterisation of uncertainty about soil properties needs to be 
extended and include cross- and space-time correlations. It is beyond the scope of 
this chapter to explain this in detail, for this we refer to standard textbooks such 
as Goovaerts (1997) and Webster and Oliver (2007). If we assume a joint normal 
distribution, then a vector of soil properties (be it different soil properties or the 
same soil property at multiple locations, depths or times) Z is fully characterised by 
the vector of means m and variance-covariance matrix C. Figure 7.1 shows three 
examples of 500 paired soil property values that were simulated from different 
bivariate normal distributions. The left panel shows an uncorrelated case with equal 
standard deviations for both properties. The centre and right panels show a case 
where soil property 2 has a greater standard deviation than soil property 1. The 
difference between these two cases is that the centre panel has a zero correlation 
between the two soil properties while it is positive in the right panel.

 

FIGURE 7.1  SCATTER PLOTS OF 500 PAIRED SOIL PROPERTY VALUES DRAWN FROM A TWO-DIMENSIONAL NORMAL 
DISTRIBUTION. LEFT: M=[10,16], C=[2,0;0,2], CENTRE: M=[10,16], C=[1,0;0,2], RIGHT: M=[10,16], C=[1,1;1,2].

7.3.2 PROPAGATION OF MODEL UNCERTAINTY

Now that we have clarified how uncertainty in soil properties may be characterised 
by probability distributions, let us consider what these distributions look like in DSM 
and how these are influenced by the uncertainty sources described in Section 7.1. 
We begin with uncertainty source 4, uncertainty in DSM models.
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We noted before that uncertainty in DSM models may be separated in model 
parameter and model structural uncertainty. A typical example of this is a multiple 
linear regression model:

 Z(s)=β0+β1 · X1(s)+β2 · X2(s)+ε(s)                    (7.1)

Note that here for simplicity we assumed two environmental covariates X1 and 
X2  while in practice we are likely to use many more. Parameter uncertainty of 
this model occurs because the parameters β0 , β1 and β2 are merely estimated using 
calibration data. Under the assumptions made by the linear regression model, these 
estimation errors are normally distributed and have zero mean, while their standard 
deviations and cross-correlations can also be computed (e.g. Snedecor and Cochran 
1989, Section 17.5). The standard deviations become smaller as the size of the 
calibration dataset increases. Both the standard deviations and cross-correlations 
are standard output of statistical software packages. Thus, we could sample from the 
joint distribution of the parameter estimation errors in a similar way as displayed in 
Figure 7.1.

The model structural uncertainty associated with the multiple linear regression model 
Eq. (7.1) is represented by the stochastic residual ε. It too is normally distributed 
and has zero mean, while its standard deviation depends on the (spatial) variation of 
the soil property Z and the strength of the relationship between  and the covariates  
X1 and X2. If the covariates explain a great deal of the variation of the soil property 
then the standard deviation of the residual will be much smaller than that of the soil 
property, as expressed by the goodness-of-fit characteristic R2, also termed ‘amount 
of variance explained’. It will be close to 1 in case of a strong linear relationship 
between soil property and covariates. In that case the standard deviation of the 
stochastic residual will be much smaller than that of the soil property, because a 
large part of the variation is explained by the model. If the covariates bear no linear 
relationship with the soil property (i.e., R2 = 0 ), the stochastic residual will have the 
same standard deviation as the soil property.

Since the joint probability distributions of the parameter estimation errors and the 
stochastic residual can analytically be computed and are routinely provided by 
statistical software, it is not difficult to analyse how these uncertainties propagate 
through the DSM model Eq. (7.1). This can be done analytically, because Eq. (7.1) 
is linear in the stochastic arguments (note that the covariates are treated known and 
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deterministic). If we predict the soil property Z at a prediction location s0 using the 
calibrated regression model as:

Z(S0 ) = β0 + β1 · X1 (S0 ) + β2 · X2 (S0 )
ˆ ˆ ˆ ˆ                     (7.2)

then the prediction error will be normally distributed with zero mean and variance 
(i.e., the square of the standard deviation) given by:

Var(Z(S0  )-Z(S0  )) = Var(β0 ) + Var(β1 ) · X1(S0  )
2 + Var(β2 ) · X2(S0  )

2+
2 Cov(β0 , β1 )· X1(S0  )+ 2 Cov(β0 , β2 ) · X2(S0  )+ 

2 Cov(β1 , β2 )· X1(S0  ) · X2(S0  )+Var(ε(S0 )) 

ˆ ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ ˆ ˆ                     (7.3)

This is a complicated expression but all entries are known and hence it can be easily 
calculated. 

In many DSM applications an additional step will be included that makes use 
of the fact that the stochastic residual  in Eq. (7.1) is spatially autocorrelated, as 
characterised by a semivariogram. If this is the case the residual spatial correlation 
can be exploited by incorporating a kriging step (Hengl et al. 2004). Kriging has 
been explained in Chapter 6, where it was also explained that the uncertainty in the 
predictions is quantified by the kriging variance. We will not repeat the theory here, 
but simply note that the kriging variance computes the prediction error variance just 
as was done in Eq. (7.3), but that in case of kriging the Var(ε(S0))  term in Eq. (7.3) is 
replaced by a smaller term, because kriging benefits from residual spatial correlation. 
In fact, in case of a pure nugget variogram, the kriging variance would be identical 
to Eq. (7.3), because in such case there is no spatial autocorrelation that one can 
benefit from. Note also that here we refer to Kriging with External Drift because 
we included a non-constant mean (i.e., covariates   X1 and X2). If no covariates 
were included Eq. (7.3) would simplify dramatically leaving only uncertainty in the 
estimated (constant) mean and the stochastic residual. This might then be compared 
with the ordinary kriging variance.

So far we considered uncertainty in DSM models that are linear in the covariates 
and that represent the model structural uncertainty by an additive stochastic term. 
This was relatively easy because tracing how uncertainty in model parameters and 
model structure propagate to the model output could be done analytically. However, 
using linear models also poses serious restrictions. The relationship between soil 
properties and covariates are typically not linear but much more complex.
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This has led to the development and use of complex non-linear DSM models, 
such as regression trees, artificial neural networks, support vector machines and 
random forests approaches, all summarised under the term ‘machine learning’ (e.g. 
Hengl et al. 2015). These more complex models typically yield more accurate soil 
predictions but quantification of the associated uncertainty is more difficult. In most 
cases, one resorts to validation and cross-validation statistics that summarise the 
prediction accuracy over the entire study area. How this is done will be explained 
in detail in  7.3. Such summary validation measures are very valuable but are no 
substitute for spatially explicit uncertainties such as the kriging variance and the 
prediction error variance presented in Eq. 7.3. Research into quantification of 
location-specific uncertainties when using machine learning algorithms is therefore 
important. However, it is beyond the scope of this chapter to review this area of 
ongoing research. One particular approach makes use of quantile regression forests. 
We refer to Meinshausen (2006) for a general text and to Vaysse and Lagacherie 
(2017) for a DSM application of this promising, albeit computationally challenging 
approach.

7.3.4 PROPAGATION OF ATTRIBUTE, POSITIONAL AND COVARIATE UNCERTAINTY

In Section 7.1 we noted that next to uncertainties in model parameters and model 
structure there may also be uncertainties in the attribute values and positions of the 
soil point data, and in the covariates. These sources of uncertainty will also affect the 
outcome of DSM model predictions.

Uncertainties in soil attribute values effectively mean that the DSM model is 
calibrated with error-contaminated observations of the dependent variable. Let us 
consider the multiple linear regression model Eq. (7.1) again. True values of the 
dependent variable Z (i.e., the target soil property, such as pH, clay content or total 
nitrogen concentration) are no longer for calibration of this model. Instead, we must 
make do with measurements Y of Z:

   Y(Si ) = Z(Si ) + δ(Si ),      i = 1 ··· n  (7.4)
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where n is the number of measurement locations and δ(Si) is a random variable 
representing measurement error. It is custom to assume that all δ(Si) are normally 
distributed, have zero mean and are mutually independent, although these 
assumptions are not strictly necessary. Their standard deviations may vary between 
cases and depend on the accuracy and precision of the measurement method. For 
instance, field estimates tend to be more uncertain than laboratory measurements 
and so the corresponding measurement errors will have a larger standard deviation. 
The consequence of the presence of measurement errors is that the estimates of the 
model parameters will be more uncertain. This is no surprise because the calibration 
data are of poorer quality. The prediction error variance will be greater too, for the 
same reason. If spatial correlation of the model residual ε is included and an extension 
to Kriging with External Drift is made, uncertainty due to measurement errors is 
further increased because the conditioning of predictions to observations cannot 
benefit as much as when the observations were error-free. For mathematical details 
we refer to Cressie (1993). Finally, we should also note that if different observations 
have different degrees of measurement error, then this will influence the weights 
that each measurement gets in calibration and prediction. Measurements with 
larger measurement errors get smaller weights. This is automatically incorporated 
in multiple linear regression and Kriging with External Drift, but how this can be 
incorporated in machine-learning approaches is less clear. 

Positional uncertainty of soil point observations will also deteriorate the quality of 
the predictions of calibrated DSM models. However, it is difficult to predict how 
much the prediction accuracy is affected. It largely depends on the degree of fine-
scale spatial variation of the soil property and covariates. For instance, if both the 
soil property of interest and the covariates are spatially smooth and hardly change 
over distances within the range of spatial displacement due to positional uncertainty, 
then little damage is afflicted by positional uncertainty. But otherwise much harm 
can be done, because the soil observations will be paired with covariate values from 
displaced locations that can be very different. So far, this interesting and important 
topic has received only little attention in the DSM literature. Grimm and Behrens 
(2010) and Nelson et al. (2011) are two examples of studies that assessed the effect 
of positional error on the accuracy of digital soil maps. 
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Finally, there are also uncertainties in covariates that affect the accuracy of DSM 
predictions. In fact, these uncertainties are already incorporated in the model 
structural uncertainty discussed before, because offering covariates that are poor 
approximations of the true soil forming factors will explain little of the spatial 
variation and lead to low goodness-of-fit statistics. From a statistical point of view, 
the covariates used in Eq. (7.1) need not be the ‘true’ soil forming factors but could 
as well be proxies of those. This does not harm the theory and quantification of the 
prediction error variance such as through Eq. (7.3) in the multiple linear regression 
case or using the kriging variance in a KED approach remain perfectly valid. This 
does not mean that digital soil mappers should not look for the most accurate and 
informative covariates, because clearly weak covariates leads to poor predictions of 
the soil (e.g. Samuel Rosa et al. 2015).
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8. VALIDATION

8.1 WHAT IS VALIDATION?
No map is perfect. All maps, including soil maps, are representations of reality 
that are often based on an underlying model. This means that there will always be 
a deviation between the phenomenon depicted on the map and the phenomenon 
observed in the real world, i.e. each map will contain errors. The magnitude of the 
errors determine the quality of the map. If a map matches reality well (the error is 
small), the quality or accuracy of the map is high. On the other hand, if a map does 
not match reality well, map accuracy is low. 

Soil maps are used for many purposes. For example to report on (changes in) soil 
organic carbon stocks, as input in agro-environmental models, to determine land 
use suitability or for decision- and policy-making. It is therefore, important that the 
quality of a map is determined and quantified. This is achieved through (statistical) 
validation. 

Validation is defined here as an activity in which the soil map predictions are 
compared with observed values. From this comparison, the map quality can be 
quantified and summarized using map quality measures.  These measures indicate 
how accurate the map is on average for the mapping area, i.e. what is the expected 
error at a randomly selected location in the mapping area. This means that map 
quality measures obtained through validation are global measures: each quality 
measure gives one value for the entire map. Note that this is different from results 
obtained through uncertainty assessment. Such assessment provides local, location-
specific (i.e. for each individual grid cell) estimates of map quality as we saw in the 
previous sections. Another important difference between validation and uncertainty 
assessment is that validation can be done using a model-free approach. We saw in 
section 7.2 that uncertainty assessment takes a model-based approach by defining 
a geostatistical model of the soil property of interest and deriving an interpolated 
map and the associated uncertainty from that, or by constructing a geostatistical 
model of the error in an existing map. The approach yields a complete probabilistic 
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characterisation of the map uncertainty, but such characterisation is only valid 
under the assumptions made;for instance, the stationarity assumptions required for 
kriging. Validation, when done properly as explained hereafter, does not assume a 
geostatistical model of the error, and hence is model- or assumption-free. This is an 
important property of validation since we do not want to question the objectivity 
and validity of the validation results.

We distinguish internal and external map accuracy. Statistical methods typically 
produce direct estimates of map quality, for instance the kriging variance or the 
coefficient of determination (R2) of a linear regression model. These we refer to as 
internal accuracy measures since these rely on model assumptions and are computed 
from data that are used for model calibration. Preferably, validation is done with an 
independent dataset not used in map making. Using such dataset gives the external 
map accuracy. One will often see that the external accuracy is poorer than the 
internal accuracy.

In section 8.3.2 we will present the most common accuracy measures used to quantify 
map quality of quantitative (continuous) soil maps and qualitative (categorical) soil 
maps. In section 8.3.3 we will introduce three commonly used validation methods 
and show how to estimate the map quality measures from a sample. This chapter is 
largely based on Brus et al. (2011). For details, please refer to this paper.

8.2. MAP QUALITY MEASURES

8.2.1 QUALITY MEASURES FOR QUANTITATIVE SOIL MAPS

All map quality measures considered here are computed from the prediction error. For 
quantitative soil maps of continuous soil properties (e.g. organic carbon content, pH, 
clay content) the prediction error is defined as the difference between the predicted 
value at a location and the true value at that location (which is the value that would 
be observed or measured by a preferably errorless measurement instrument) (Brus 
et al., 2011):

e(S) = Z(S)-Z(S)ˆ

where e(S) = Z(S)-Z(S)ˆ  is the predicted soil property at validation location e(S) = Z(S)-Z(S)ˆ, and e(S) = Z(S)-Z(S)ˆ  is the true 
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value of the soil property at that location. We consider six map quality measures 
that are computed from the prediction error here: the mean error, the mean absolute 
error, the mean squared error and root mean squared error, the model efficiency and 
the mean squared deviation ratio.

Before we introduce the map quality measures and show how to estimate these, it is 
important to understand the difference between the population and a sample taken 
from the population. The population is the set of all locations in a mapping area. 
For digital soil maps, this is the set of all pixels or grid cells of a map. A sample is a 
subset of locations, selected in some way from the set of all locations in the mapping 
area. With validation we want to assess the map accuracy for the entire population, 
i.e. for the map as a whole; we are not interested in the accuracy at the sample of 
locations only. For instance, we would like to know the prediction error averaged 
over all locations of a map and not merely the average prediction error at a sample 
of locations. Map quality measures are therefore, defined as population means. 
Because we cannot afford to determine the prediction error at each location (grid 
cell) of the mapping area to calculate the population means, we have to take a sample 
of a limited number of locations in the mapping area. This sample is then used to 
estimate the population means. It is important to realize that we are uncertain about 
the population means, because we estimate it from a sample. Ideally this uncertainty 
is quantified and reported together with the estimated map quality measures. 
In this section we will introduce the definitions of the map quality measures.

In the next section, we show how we can estimate these measures from a sample.

Mean error

The mean error (ME) measures bias in the predictions. The ME is defined as the 
population mean (spatial mean) of the prediction errors:

M E = e = 1―
NΣ

N

i=1

e(Si )

where i indicates the location, i = 1,2, ... , N, and N is the total number of locations 
or grid cells/pixels in the mapping area. The mean error should be (close to) zero, 
which means that predictions are unbiased meaning that there is no systematic over- 
or under-prediction of the soil property of interest.

Mean absolute error and (root) mean squared error
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The mean absolute error (MAE) and mean squared error (MSE) are measures of 
map accuracy and indicate the magnitude of error we make on average. The MAE 
is defined by the population mean of the absolute errors:

M A E = |  | = 1―
NΣ

N

i=1

(Si )e_ e_

and the MSE by the population mean of the squared errors:

M S E =    2 = 1―
NΣ

N

i=1

 2(Si )e_ e_

Many authors report the root mean squared error (RMSE) instead of the MSE, 
which is computed by taking the square root of the MSE. The RMSE can be a 
more appealing quality measure since it has the same unit of measurement as the 
mapped property and can therefore more easily be compared to it. If the squared 
error distribution is strongly skewed, for instance when several very large errors are 
present, then this can severely inflate the (R)MSE. In such case, the (root) median 
squared error is a more robust statistic for the ‘average’ error (Kempen et al., 2012). 

Brus et al. (2011) argue that instead of using a single summary statistic (the mean) 
to quantify map quality measures, one should preferably express quality measures 
for quantitative soil maps through cumulative distribution functions (CDFs). Such 
functions provide a full descriptions of the quality measures from which various 
parameters can be reported, such as the mean, median or percentiles. Furthermore, 
they argue that it can be of interest to define CDFs or its parameters for sub-areas, 
for instance geomorphic units, soil or land cover classes. Brus et al. (2011) give 
examples of estimating CDFs for validation of digital soil maps.

Amount of variance explained

The model efficiency, or Amount of Variance Explained (AVE) (Angelini et al., 
2016; Samuel-Rosa et al., 2015), quantifies the fraction of the variation in the data 
that is explained by the prediction model. It measures the improvement of the model 
prediction over using the mean of the data set as predictor and is defined as follows 
(Krause et al., 2005):

A V E = 1 - Σ
N
i=1

ΣN
i=1

(Z(Si )-Z(Si ))2ˆ

(Z(Si )-Z)2_
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where Z is the population mean of soil property Z. The quantity in the numerator 
is the sum of the squared prediction errors (for each location the prediction error is 
computed and squared; the squared prediction errors are summed over all locations 
in the area). In linear regression this quantity is known as the residual sum of squares 
(RSS). The quantity in the denominator is also a sum of squared prediction errors, 
but here the mean of the area is used as predictor. In linear regression this quantity is 
known as the total sum of squares (TSS). Note that if we would divide the quantity in 
the denominator by the number of locations in the mapping area N we would obtain 
the population variance (spatial variance) of the soil property Z. 

If the numerator and denominator are equal, meaning the AVE is zero, then the model 
predictions are no improvement over using the mean of the data set as predictor for 
any location in the mapping area. An AVE value larger than zero (RSS smaller than 
TSS) means that the model predictions are an improvement over using the mean as 
predictor (this is what we hope for). In case the AVE is negative, then the mean of 
the data set is a better predictor than the prediction model.

Mean squared deviation ratio

Finally, we introduce the mean squared deviation ratio (MSDR) as a map quality 
measure (Kempen et al., 2010; Lark, 2000; Voltz and Webster, 1990; Webster and 
Oliver, 2007). Contrary to the quality measures discussed so far, the MSDR assesses 
how well the prediction model estimates the prediction uncertainty (expressed as 
the prediction error variance). The MSDR is defined as:

M S D R =
(Z(Si  )-Z(Si  ))2ˆ

σ 2(Si  )
1―
NΣ

N

i=1  
where 

M S D R =
(Z(Si  )-Z(Si  ))2ˆ

σ 2(Si  )
1―
NΣ

N

i=1
 is the prediction error variance at location Si , i = 1,2, ... , N. The 

numerator is the squared error at location . The fraction represents the squared 
Zscore. In case of kriging, the prediction error variance is the kriging variance. In 
case of linear regression, the prediction error variance is the prediction variance of 
the linear regression predictions that can be obtained by the statistical software R 
by running the predict function with argument se.fit=TRUE. This function returns 
for each prediction location the standard error of the predicted value as well as 
the residual standard deviation (the residual.scale value). By squaring both values 
and then summing these, the prediction error variance is obtained. If the prediction 
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model estimates the error variance well, then the MSDR should be close to one. 
A value smaller than one suggests that the prediction error variance overestimates 
the variance;  a value larger than one suggests that the prediction error variance 
underestimates the variance.

Lark (2000) notes that outliers in the prediction data will influence the squared Zscore 
and suggests to use the median squared Zscore instead of the mean since it is a more 
robust estimator. A median squared Zscore equal to 0.455 suggests that the prediction 
model estimates the prediction uncertainty well.

8.2.2 QUALITY MEASURES FOR QUALITATIVE SOIL MAPS

Like the quality measures for quantitative soil maps, the quality measures for 
qualitative or categorical soil maps (e.g. soil classes) are defined for the population, 
i.e. all locations in the mapping area. The basis for map quality assessment of 
qualitative maps is the error matrix (Brus et al., 2011; Lark, 1995). This matrix is 
constructed by tabulating the observed and predicted class for all locations in the 
mapping area in a two-way contingency table (Figure 8.1). The population error 
matrix is a square matrix of order U, with U being the number of soil classes observed 
and mapped. The columns of the matrix correspond to observed soil classes and the 
rows to predicted soil classes (the map units). N is the total number of locations 
of the mapping area. Elements Nij are the number of locations mapped as class i 
with observed class j. The row margins Ni+ are the locations mapped as class i, and 
column margins N+j the locations for which the observed soil class is j. Note that the 
elements of the population error matrix can also be interpreted as surface areas. In 
that case element Nij is the surface area mapped as class i with observed class j.

FIGURE 8.1  POPULATION ERROR MATRIX. 
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From the population error matrix several quality measures can be summarized, 
though it is strongly recommended that the error matrix is included in a validation 
assessment. Brus et al. (2011) follow the suggestion by Stehman (1997) that quality 
measures for categorical maps should be directly interpretable in terms of the 
probability of a misclassification and therefore recommend the use of three map 
quality measures: the overall purity, the map unit purity and class representation. 
We follow this recommendation here. Note that the map unit purity often is referred 
to as user’s accuracy, and class representation as producer’s accuracy (Stehman, 1997; 
Adhikari et al., 2014). Lark (1995) however, questions the appropriateness of these 
terms since both quality measures can be important for users as well as producers. 
He proposes to use map unit purity and class representation instead, which is 
adopted by Brus et al. (2011) and followed here.

A fourth frequently used group of quality measures are Kappa indices, which adjust 
the overall purity measure for hypothetical chance agreement (Stehman, 1997). How 
this chance agreement is defined differs between the various indices. Some authors 
however, conclude that Kappa indices are difficult to interpret, not informative, 
misleading and/or flawed and suggest to abandon their use (Pontius and Millones, 
2011). These authors argue that Kappa indices attempt to compare accuracy to a 
baseline of randomness, but randomness is not a reasonable alternative for map 
construction. We therefore do not consider kappa here.

The overall purity is the fraction of locations for which the mapped soil class equals 
the observed soil class and is defined as (Brus et al., 2011):

p =Σ
U

i=1

Nuu / N

which is the sum of the principal diagonal of the error matrix divided by the total 
number of locations in the mapping area. The overall purity can be interpreted as 
the areal proportion of the mapping area that is correctly classified. 

Alternatively, an indicator approach can be used to compute the overall purity. 
A validation site gets a ‘1’ if the observed soil class is correctly predicted and a ‘0’ 
otherwise. The overall purity is then computed by taking the average of the indicators.
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Map unit purity

The map unit purity is calculated from the row marginals of the error matrix. It is 
the fraction of validation locations with mapped class u for which the observed class 
is also u. The map unit purity for class u is defined as (Brus et al., 2011): 

pu =
Nuu

Nu+

The map unit purity can be interpreted as the proportion of the area of the map unit 
that is correctly classified. The complement of pu, 1 - pu , is referred to as the error of 
commission for mapped class u. 

Class representation

The class representation is calculated from the column marginals of the error matrix. 
It is the fraction of validation locations with observed class u for which the mapped 
class is u. The class representation for class u is defined as (Brus et al., 2011): 

ru =
Nuu

N+u

The class representation can be interpreted as the proportion of the area where in 
reality class u occurs that is also mapped as class u. The complement of ru, 1 - ru, is 
referred to as the error of omission for mapped class u.

8.2.3 ESTIMATING THE MAP QUALITY MEASURES AND ASSOCIATED UNCERTAINTY

In validation, we estimate the population means of the map quality measures from 
a sample taken from a limited number of locations in the mapping area. After all, 
we cannot afford to sample all locations, i.e. each grid cell of our soil map. Because 
the map quality measures are estimates, we are uncertain about these: we infer 
the quality measures from only a limited number of observations taken from the 
population. We do not know the true population means. The estimation uncertainty 
can be quantified with the sampling variance. 
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From the variance, the lower and upper boundary of a confidence interval, typically 
the 95%, can be computed using basic statistical theory: 

 CI = (x - 1,96x        ;  )ˆ σ
√n

x + 1,96 x   ˆ σ
√n

where CI = (x - 1,96x        ;  )ˆ σ
√n

x + 1,96 x   ˆ σ
√n is the estimated map quality measure, for instance the ME, MSE or overall 

purity, σ is the estimated standard deviation of the map quality measure and σ is the 
validation sample size. 

Quantified information about the uncertainty associated to map quality measures 
is useful and required for statistical testing. For instance, if one wants to test if 
one mapping method performs better than the other method one needs quantified 
information about uncertainty. Because we are uncertain about the estimated 
quality measures, an observed difference in map quality between two methods does 
not necessarily mean that one method is better than the others, even when there 
is a substantial difference. The difference might be attributed to chance because 
we infer the quality measures from a limited sample from the population. With 
statistical hypothesis testing we can calculate how large the probability is that 
observed difference is caused by chance. Based on the outcome we can accept or 
reject the hypothesis that there is no difference between the performance of two 
mapping methods (this would be the null hypothesis for statistical testing) for a 
given significance level, usually 0.05.   

8.3. GRAPHICAL MAP QUALITY MEASURES

In addition to quantifying map accuracy statistically, one can also present validation 
results obtained from a sample graphically. This can be done by creating scatter plots 
of predicted against observed values and spatial bubble plots of validation errors. 
Figure 8.2 shows an example of a scatterplot and bubble plot. Both plots can be 
easily made with R (R Development Core Team, 2016). Use the function plot(x,y)
to generate a scatter plot. The 1:1 line (black line in Figure 8.2) can be added to the 
plot with the command abline(0,1). The spatial bubble plot can be generated with 
the bubble function of the sp package (Pebesma and Bivand, 2005). 
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FIGURE 8.2  SCATTERPLOT OF PREDICTED VERSUS OBSERVED SOIL ORGANIC MATTER CONTENT FOR RWANDA (LEFT) 
AND SPATIAL BUBBLE PLOT OF CROSS-VALIDATION ERROR FOR SOIL ORGANIC MATTER (RIGHT) (KEMPEN ET AL., 2015). 
THE BLACK LINE IN THE SCATTER PLOT REPRESENTS THE 1:1 LINE OF PREDICTION VERSUS OBSERVED, THE BLUE LINE 
REPRESENTS THE REGRESSION BETWEEN OBSERVED AND PREDICTED VALUES.

8.4. VALIDATION METHODS AND STATISTICAL INFERENCE

Following Brus et al. (2011), we introduce and discuss three common validation 
methods: additional probability sampling, data-splitting and cross-validation, and show 
how to estimate the map quality measures introduced in previous section from a 
sample.

With additional probability sampling an independent dataset is collected from the 
sampling population (all grid cells of a digital soil map) for the purpose of validation. 
This dataset is used in addition to a dataset that is used to calibrate a prediction 
model. Such dataset is often a legacy dataset collected with a purposive sampling 
design.

Data-splitting and cross-validation are applied in situations where one has only one 
data set available for prediction model calibration and validation. This can be a 
dataset collected with probability sampling, but in practice this typically is a legacy 
dataset collected with some purposive sampling design.

We warn here that if one uses data-splitting or cross-validation with a dataset 
collected with purposive sampling, then this has severe implications on the validity 
and interpretation of the estimated map quality measures as we will explain below.
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8.4.1 ADDITIONAL PROBABILITY SAMPLING

The most appropriate approach for validation is by additional probability sampling. 
This means that an independent validation dataset is collected in the field on basis of 
a probability sampling design. Validation based on probability sampling ensures one 
obtains unbiased and valid estimates of the map quality measures (Brus et al., 2011; 
Stehman, 1999). Additional probability sampling has several advantages compared 
to data-splitting and cross-validation using non-probability sample data. These are:

• no model is needed for estimating map quality estimates. We can apply design-
based estimation, meaning that model-free unbiased and valid estimates of the 
map quality measures can be obtained;

• discussions on the validity of the estimated map quality are avoided;

• model-free, valid estimates of the variance of the map quality measures can 
be obtained that allow for hypothesis testing, e.g. for comparison of model 
performance.

Disadvantages can be extra costs involved in collecting an additional sample or 
terrain conditions that make it difficult to access all locations in the mapping area. 

Probability sampling is random sampling such that:

• all locations in the mapping area have a probability larger than 0 of being 
selected

• the inclusion probabilities are known but need not be equal. 

It should be noted that random sampling is often used for arbitrary or haphazard 
sampling. Such sampling is not probability sampling because the inclusion 
probabilities are not known. Design-based, model-free estimation of map quality 
measures is not possible in this case. All probability samples are random samples but 
not all random samples are probability samples. The term probability sampling should 
therefore only be used for random sampling with known inclusion probabilities.

There are many different probability sampling designs: simple, stratified, systematic, 
two-stage, clustered random sampling. We will not give an exhaustive overview 
here of all these designs. A good resource is de Gruijter et al. (2006). For reasons of 
simplicity we focus here on simple random sampling.
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In simple random sampling, no restrictions are imposed on random selection of 
sampling sites except that the sample size is fixed and chosen prior to sampling (de 
Gruijter et al., 2006). All sampling locations are selected with equal probability and 
independently from each other. This can for instance be done as follows (de Gruijter 
et al., 2006):  

1. Determine the minimum and maximum X and Y coordinates of the mapping 
area (the bounding box).

2. Generate two independent random coordinates X and Y from a uniform 
probability distribution on the interval (xmin, xmax) and (ymin, ymax)

3. Check if the selected sampling site falls within the mapping area. Accept the 
sampling site if it does; discard the sampling site if it does not.

4. Repeat steps 2 and 3 until the  locations have been selected.

If a sampling location cannot be visited because of inaccessibility for instance, then 
this location should be discarded and be replaced by a location chosen from a reserve 
list. Always the location at the top of the list should be selected for this purpose; not 
an arbitrarily chosen location from the list such as the closest one. It is not allowed 
to shift an inaccessible sampling location to a location nearby that can be accessed. 
Irregularity, clustering and open spaces characterise the simple random sampling 
design (de Gruijter et al., 2006). 

 
Estimation of quantitative map quality measures: For each validation location 
we compute the error, e(Si ) = Z(Si )-Z(Si )ˆ , the absolute error, |e|(Si ) = |                    |Z(Si )-Z(Si )ˆ , or 
squared error, e2(Si ) = (                    )2Z(Si )-Z(Si )ˆ . The spatial mean of the mapping area for map 
quality measure x is then estimated by:

1―
NΣ

N

i=1

x̂ = x(Si)

where i indicates the validation location, i = 1,2, ... ,n, n the validation sample size, 
and 1―

NΣ
N

i=1

x̂ = x(Si) the estimated population mean of map quality measure x at location si · x  
is the prediction error in case of the ME, absolute error in case of the MAE, squared 
prediction error in case of the MSE. Note that the estimator is the unweighted 
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sample mean. This unweighted mean is an unbiased estimator  because all sampling 
locations were selected with equal probability.

The MSDR is estimated by:

M S D R =
(Z(Si  )-Z(Si  ))2ˆ

σ 2(Si  )
1―
NΣ

n

i=1

ˆ

and the AVE by:

A V E = 1 - Σ
n
i=1

Σn
i=1

(Z(Si )-Z(Si ))2ˆ

(Z(Si )- Z  )2 _
ˆ

ˆ

where 
A V E = 1 - Σ

n
i=1

Σn
i=1

(Z(Si )-Z(Si ))2ˆ

(Z(Si )- Z  )2 _
ˆ

ˆ  is the mean of the target soil property estimated from the validation sample.

One should be careful when assessing the proportion of variance explained by 
computing the R2 from a linear regression of the predicted value on the observed value 
(Krause et al., 2005), as is often done in practice. The R2 quantifies the dispersion 
around the regression line; not around the 1:1 line in which we are interested in 
validation. So it does not directly compare the predicted with observed value as 
does the AVE; i.e. it is not based on the prediction error. A high R2-value therefore, 
does not automatically mean a high AVE. For instance, in case of strongly biased 
predictions the R2 can be high but the AVE will be low. The blue line in Figure 8.2 
is the regression line that one obtains when regression the observed value on the 
predicted value. This line slightly differs from the 1:1 line. In this example the R2 of 
the regression is 0.42 while the AVE is 0.40.

The uncertainty associated to the estimated map quality measures is quantified with 
the sampling variance, which for the ME, MAE and MSE is estimated by:

Σ
n

i=1

Var(x)ˆ  = (x(Si )- x )ˆ1
n(n-1)

and the 95% confidence interval (CI) of  is given by:

CI95 = x + 1,96 xˆ x̂Var(   )

We should warn here that the calculation of the CI is based on the assumption that 
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the estimated map quality measure means have a normal distribution (the central 
limit theorem). For the squared errors this assumption can be unrealistic, especially 
for small sample sizes.

Estimation of qualitative map quality measures: For validation of qualitative soil 
maps, a sample error matrix is constructed from the validation data (Figure 8.3). n 
is the total number of validation locations in the sample. Element nij of the matrix 
corresponds to the number of validation locations that have been predicted as class i, 
i = 1,2, ... , U and belong to class j, j = 1,2, ... ,U  (Lark, 1995). The matrix summarizes 
correct predictions and incorrect predictions within the validation data.

FIGURE 8.3  SAMPLE ERROR MATRIX. 

From the sample error matrix the overall purity, map unit purity and class 
representation are  estimated by:

p =Σ
U

i=1

nuu /nˆ

pu =
nuu

nu+

ˆ

ru =
nuu

n+u

ˆ
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Alternatively, the overall purity can be estimated by defining a purity indicator 
variable for each validation location that takes value 1 if the mapped soil class 
equals the observed soil class at that location, and 0 else. The overall purity is then 
estimated by: 

p = Σ
n

i=1

d(Si  )ˆ 1
n

 
where  is the indicator variable at validation location p = Σ

n

i=1

d(Si  )ˆ 1
n

. The variance of the estimated 
overall purity is estimated by:

ˆp  = Σ
n

i=1

( d(Si  )-p)2ˆ 1
n(n-1)

Var(  )

Alternatively, the variance is estimated by:

 p  =ˆ
n-1

Var(  )
p(1-p)ˆ ˆ

which is the variance of a binomial probability distribution. The 95% confidence 
interval of CI95 =    + 1,96 x Var(   )p̂ p̂ is given by:

CI95 =    + 1,96 x Var(   )p̂ p̂

We warn that the CI as calculated here is a rough approximation which only holds 
when n x CI95 =    + 1,96 x Var(   )p̂ p̂ and n x (1 - CI95 =    + 1,96 x Var(   )p̂ p̂) are large (5 as a rule of thumb). Otherwise the binomial 
distribution should be used to compute the CI.

Figure 8.4 shows a hypothetical example of a sample error matrix for soil class map. 
For this example, the overall purity is estimated by: (19 + 33 + 25 + 42 + 19)/240 = 0.575, 
meaning that for an estimated 57.5% of the mapping area the mapped soil class is 
equal to the true soil class.

 
FIGURE 8.4  SAMPLE ERROR MATRIX FOR A HYPOTHETICAL SOIL CLASS MAP. 
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Table 8.1 gives the map unit purities and class representations for this example. 
The map unit purity of the Gleysol is 0.581, meaning that at 58.1% of the validation 
locations for which a Gleysol is predicted, a Gleysol is observed. Assuming the 
validation data were collected by simple random sampling, we could conclude that 
for 58.1% of the area mapped as Gleysol we would find a Gleysol in the field. The 
class representation of the Gleysol is 0.463, meaning that for 46.3% of the validation 
locations classified as Gleysol, we map a Gleysol. The majority of the Gleysol 
locations is thus mapped as a different soil class. Again, assuming the validation 
data were collected by probability sampling, we would estimate that 22.5% 

( 54
240

x 100 % ) of our mapping area is covered by Gleysols. We map Gleysols for 
17.9% of the area ( 43

240
x 100 % ). It can happen that a soil class has a high map unit 

purity and a low class representation. This means that if we map a Gleysol we will 
likely find a Gleysol there, but that a large extent of the true Gleysol area is not 
mapped as such.

Table 8.1. Map unit purity and class representation statistics for the 
hypotheticalexample given in Figure 8.4.

 map unit purity class representation

Anthrosol 0.679 0.633

Cambisol 0.508 0.516

Gleysol 0.581 0.463

Luvisol 0.592 0.700

Podzol 0.576 0.594

8.4.2 DATA-SPLITTING

In data-splitting the sample data set is split in two subsets. One subset is used to 
calibrate the prediction model. The other subset is used for validation. A frequently 
used splitting criterion is 70-30, where 70% of the sample data are used for calibration 
and 30% for validation. The choice of a splitting criterion however, is arbitrary 
and it is not evident how to split a data set in such a way that unbiased and valid 
estimates of the map accuracy can be obtained. For sparse data sets, data-splitting 
can be inefficient since the information in the data set is not fully exploited for both 
calibration and validation.
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It is important to note here that a random subsample of (legacy) data that are 
collected with a purposive (non-probability) design, is not a probability sample of 
the study area. This means that design-based estimation of map quality measures is 
not possible. 

If a validation (sub)sample is a non-probability sample of the mapping area, then 
we must account for possible spatial autocorrelation of the prediction errors when 
estimating the map quality measures. One can imagine that when two validation 
locations are close together and the prediction errors are correlated that there is 
less information in these two locations (there is information redundancy because of 
autocorrelation) than in two isolated locations. This information redundancy has to 
be accounted for when estimating map quality measures and implies that we have to 
rely on model-based estimation: a model for the spatially autocorrelated prediction 
error has to be assumed. Thus, we will not obtain model-free, unbiased and valid 
estimates of the quality measures from non-probability sample validation data. In 
a case study, Knotters and Brus (2013) showed that model-based predictions of 
producer’s accuracies from two models differed strongly, indicating that with the 
model-based approach the validation results strongly depend on model assumptions.

In most studies however, spatial correlation is not accounted for when estimating 
map quality measures using the estimators presented above under ‘Simple random 
sampling’ from non-probability sample data. In such case, the quality measures 
cannot be considered unbiased and valid estimates of the population means of 
the map quality measures. In addition, the estimated variance of the map quality 
measures is not valid and statistical testing of mapping methods to assess which 
method gives the most accurate predictions cannot be done. 

In other words, if the simple random sampling estimators are used to estimate map 
quality measures then these are only valid for the validation data points. The map 
quality measures do not give a valid estimate of the quality of the map as a whole 
(the population). For instance, the overall purity cannot be interpreted as an areal 
proportion of correctly mapped soil classes, only as the proportion of the validation 
data points for which the soil class is correctly predicted.
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8.4.3 CROSS-VALIDATION

In K-fold cross-validation (CV), the dataset is split into K roughly equal sets. One 
of these sets is set aside for validation. The model is then calibrated using the data 
from the K-1 sets and used to predict the target variable for the data points set aside. 
From this prediction the prediction error is calculated. This procedure is repeated 
K times, each time setting a different set aside for validation. In this way we obtain 
K estimates of the prediction error: one for each validation sample site. In this way, 
all data are used for validation and model calibration. It is thus much more efficient 
than data-splitting.

K is typically chosen as 5 or 10, or as N the number of data points. The latter is 
referred to as leave-one-out cross-validation (LOOCV) in which only one validation 
site is set aside in each iteration. The model is then calibrated with N-1 observations. 
Some repeat K-fold cross-validation a number of times and average the results to 
obtain a more robust estimate of the map quality measures.

Note that the problem of spatially correlated errors remains when data are non-
probability sample data. Cross-validation using a non-probability sampling dataset 
suffers from the same drawbacks with respect to unbiasedness and validity of the 
estimates of the map quality measures as data-splitting. The estimates cannot be 
interpreted as being valid for the mapping area, but only for the validation locations. 

In R, the caret package (Kuhn, 2015) offers functionality for data-splitting and 
cross-validation.
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9.  DATA SHARING

This chapter reviews possibilities and “good practices” of exchanging produced 
soil data. Once the analysis, spatial prediction and quality control have been all 
completed, it is useful to follow some minimum steps and export and prepare the 
data for distribution so that its potential users can easily access it, use it, and make 
correct interpretation of data. We consider geo-publishing options for soil data 
either based on using third-party web services or by using one’s own installation 
of the software. We put a clear focus on using the Open Source software solutions:  
GDAL1, R2, GeoServer3, OpenLayers4 and Leaflet5, and public domain data and 
metadata standards.

The authors have 15+ years of experience with producing, publishing and sharing 
soil maps and have been involved in large soil mapping projects where data volumes 
often exceed standard desktop GIS capacities. For information on specific software 
please refer to the provided links. Even more information on using GDAL and similar 
GIS tools through a command line can be found via the Global Soil Information 
Facilities tutorials of ISRIC at http://gsif.isric.org. The text is illustrated with example 
scripts of the statistical software R in combination with GDAL.

9.1 EXPORT FORMATS

9.1.1 TYPE OF SOIL DATA AND THEIR FORMATTING

Before we start reviewing soil data formats, it is useful to understand which types of 
soil variables, soil maps and soil DBs are most commonly generated and used, and 
what are their specific advantages and limitations. Soil science works with many 
variables common to ecology and/or physical geography (e.g. soil temperature), but 
it also works with several variables specific to soil science only. Some soil factor-type 
variables specific to soil science only are for example:

1  HTTP://WWW.GDAL.ORG / HTTPS://EN.WIKIPEDIA.ORG/WIKI/GDAL 
2  HTTPS://CRAN.R-PROJECT.ORG/WEB/VIEWS/SPATIAL.HTML 
3  HTTP://GEOSERVER.ORG/ 
4  HTTPS://OPENLAYERS.ORG/ 
5  HTTP://LEAFLETJS.COM/ 
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Soil taxa or soil classes (this includes taxonomic systems and connected diagnostic 
soil properties and horizons).

• Soil texture-class systems.

• Soil color classification systems e.g. Munsell color codes.

• Soil drainage classes (hydrological classifications).

• Soil diagnostic horizons.

Consider for example the following soil texture data:

> library(soiltexture)

> tex <- data.frame(

+  CLAY = c(05,60,15,05,25,05,25,45,65,75,13,47),

+  SILT = c(05,08,15,25,55,85,65,45,15,15,17,43),

+  SAND = c(90,32,70,70,20,10,10,10,20,10,70,10)

+ )

> 

> TT.plot(class.sys = "USDA.TT", tri.data = tex, main = "", cex.axis=.7, cex.lab=.7)

FIGURE 9.1  SOIL TEXTURE TRIANGLE PLOT. AN EXAMPLE OF SOIL SCIENCE SPECIFIC DATA.
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The way soil texture data is displayed and texture classes (SaLo, Lo, Sa etc.) used 
in a texture triangle is specific to soil science. The way this data is formatted and 
presented can be, likewise, specific to soil science only.

Most of soil data is in fact spatial. “Spatial” implies that spatial (and temporal) 
reference is attached to each measured / estimated value, i.e. it is location specific. 
Spatio-temporal references typically includes for example: 

• Geographic location in local or geographic coordinates (ideally longitude 
and latitude in the WGS84 coordinate system);

• Depth interval expressed in cm from land surface (upper and lower depth);

• Support size or referent soil volume (or voxel) i.e. the horizontal sampling 
area multiplied by the thickness of the sampling block;

• Temporal reference i.e. begin and end date/time of the period of measurements/
estimations.

Spatial data formats are used to represent spatial objects. This can be (Bivand et al. 
2013; Neteler and Mitasova, 2013):

• Points (2D or 3D): used to represent sampling locations, soil horizons, soil 
profiles etc.

• Lines (2D): used to represent soil transects, streams, administrative 
boundaries etc.

• Polygons (2D): used to represent soil mapping units and/or geomorphological 
units, landforms, administrative areas, farms, plot trials etc.

• Grids or rasters (2D or 2.5D): used to represent soil spatial predictions 
(spatially complete) of soil properties and classes etc.

• 3D grids or Voxels: used to represent soil spatial predictions (spatially 
complete) of soil properties in 3D.

It is also important to be able to distinguish between sampled or predicted soil data:

1. Soil samples (usually points or transects) are spatially incomplete. They are 
used to generate spatial predictions.
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2. Spatial predictions of soil variables (soil maps) are spatially complete. They 
are used for decision making and further modeling i.e. they are used to 
construct a Soil Information System.

FIGURE 9.2  SOME FREQUENTLY REQUIRED SOIL VARIABLES (SORTED BY NUMBER OF STUDIES) BASED ON THE STUDY BY 
KELLER ET AL. (2014). THIS LIST IS PROBABLY COUNTRY/PROJECT SPECIFIC BUT ILLUSTRATES THE DIFFERENCES CONSID-
ERING THE INTEREST IN SOIL DATA.

A collection of spatially exhaustive soil grids of various soil properties (physical and 
chemical soil properties, soil water, soil classification etc) make a Soil Information 
System (SIS). SIS are often complemented with soil sample data and serve both 
data formats6. A Soil Information System should preferably be a Database (DB), 
so that users can access and query data using some standard DB languages (for 
example SQL). Steps to export soil data into a DB format are explained in later 
sections.

6  E.G.:HTTP://WWW.LANDIS.ORG.UK/, HTTP://WWW.ASRIS.CSIRO.AU
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9.1.2 GENERAL GIS DATA FORMATS: VECTOR, RASTER, TABLE

All soil data we produce through soil mapping can be in principle distributed using 
one of the two basic GIS formats of data:

• Vector format: this format is often more suitable for exporting point, line and 
polygon (areal) data,

• Raster or gridded format: this format is often more suitable for exporting spatial 
predictions of soil variables,

Data in vector format can be converted to raster (see e.g. rasterize function in the 
raster R package7 ) and vice versa — raster data can be converted to vector formats. 
For example, rasters can be converted to polygons (see e.g. rast2vect function in 
the plotKML package8). If the conversion is done carefully and if all the relations 
between scale and pixel size have been considered (see Hengl, 2006 for more details), 
then information loss due to conversion from raster to vector and vice versa should 
be minimal.

Both vector and raster GIS data can also be converted to tabular data format. 
By converting a GIS layer to a table, spatial geometry and spatial relations will 
be ‘stripped off’, so that only limited spatial analysis operations can be applied. To 
convert raster layers to tabular data, consider using the SpatialPixelsDataFrame-
class in the sp package9 and/or the RasterLayer-class from the raster package10 in 
combination with the rgdal package (Bivand et al. 2013):

> library(rgdal)

> library(plotKML)

> ?readGDAL

> spnad83 <- readGDAL(system.file("pictures/erdas_spnad83.tif", package = "rgdal")[1])

… erdas_spnad83.tif has GDAL driver GTiff 

and has 658 rows and 571 columns

> spnad83.tbl <- as.data.frame(spnad83)

> str(spnad83.tbl)

'data.frame': 375718 obs. of  3 variables:

 $ band1: int  0 0 0 0 0 0 0 0 0 0 ...

 $ x    : num  79019 79059 79099 79139 79179 ...

 $ y    : num  1439248 1439248 1439248 1439248 1439248 ...

7  HTTPS://WWW.RDOCUMENTATION.ORG/PACKAGES/RASTER/VERSIONS/2.5-8/TOPICS/RASTERIZE 
8  HTTPS://WWW.RDOCUMENTATION.ORG/PACKAGES/PLOTKML/VERSIONS/0.5-6/TOPICS/VECT2RAST 
9  HTTPS://WWW.RDOCUMENTATION.ORG/PACKAGES/SP/VERSIONS/1.2-4/TOPICS/SPATIALPIXELSDATAFRAME 
10  HTTPS://WWW.RDOCUMENTATION.ORG/PACKAGES/RASTER/VERSIONS/2.5-8/TOPICS/RASTER 
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where as.data.frame is a function converting a raster object to a table. Note that the 
output table now contains coordinates for each cell (center of the grid node), which 
is in fact memory inefficient as coordinates are provided for each row in the table. 

Likewise, to convert a vector layer to tabular formats one can use the Simple 
Features functionality of the sf package11. The SF standard is widely implemented 
in spatial databases (PostGIS, ESRI ArcGIS) and forms the vector data basis for 
libraries such as GDAL and web standards such as GeoJSON (http://geojson.org/). 
To convert for example spatial polygons layer to a tabular format we would use:

> library(sf); library(plotKML)

> data(eberg_zones)

> class(eberg_zones)

[1] "SpatialPolygonsDataFrame"

attr(,"package")

[1] "sp"

> eberg_zones.tbl <- as(eberg_zones, "sf")

> str(eberg_zones.tbl)

Classes ‘sf’ and 'data.frame': 11 obs. of  2 variables:

 $ ZONES   : Factor w/ 4 levels "Clay_and_loess",..: 2 1 2 3 4 2 2 2 3 3 ...

 $ geometry: List of  11 , printing List of 1

  ..$ : num [1:313, 1:2] 3570250 3570250 3570262 3570275 3570288 ...

  ..- attr(*, "class")= chr  "XY" "POLYGON" "sfg"

 - attr(*, "sf_column")= chr "geometry"

 - attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA

  ..- attr(*, "names")= chr "ZONES"

Note that using spatial layers in simple tabular formats can be cumbersome because 
many spatial relationships and properties are likely lost (although these can be 
assigned reversibly). In addition, the size of tabular objects is much bigger than 
if we use data in the original GIS data formats, especially if those formats support 
compression. On the other hand, having data in tabular format can be often the only 
way to exchange the data from spatial to non-spatial databases or from software 
without any data communication bridge. Also, tabular data is human-readable 
which means that it can be opened in text editors, spreadsheet programs or similar.

11  HTTPS://CRAN.R-PROJECT.ORG/WEB/PACKAGES/SF/VIGNETTES/SF1.HTML 
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9.1.3 RECOMMENDED GIS DATA EXCHANGE FORMATS

As a general recommendation producers of soil data should primarily look at using 
the following data formats for exchanging soil data (points, polygons and rasters):

• GPKG12 (an Open Format for Geospatial Information): platform-
independent, portable, self-describing, compact format for transferring 
geospatial information. 

• GeoTIFF (for rasters): a TIFF (image) file that allows embedding spatial 
reference information, metadata and color legends. It also supports internal 
compression algorithms and hierarchical indexing.

Both formats can be read easily in R or similar data processing software. Vectors 
are also commonly exported and shared in ESRI Shapefile (SHP) format. The 
advantage of GPKG format versus somewhat more common ESRI SHP format 
is that GPKG files are basically a portable database (SQLite container) so that 
the user does not have to import the whole data into a program but also fetch parts 
of data by using SQL queries and it can handle vector and raster data in it. The 
following example demonstrates how to create a GPKG file and how to query it:

> library(RSQLite)

Loading required package: DBI

> data(eberg)

> coordinates(eberg) <- ~X+Y

> proj4string(eberg) <- CRS("+init=epsg:31467")

> writeOGR(eberg, "eberg.gpkg", "eberg", "GPKG")

> con <- dbConnect(RSQLite::SQLite(), dbname = "eberg.gpkg")

> df <- dbGetQuery(con, 'select "soiltype" from eberg')

> summary(as.factor(df$soiltype))

   A    B    D    G   Ha   Hw    K    L    N    Q    R    S    Z NA's 

  71  790  252   86    1    1  186  704   20  376   23  487  215  458 

> dbGetQuery(con, 'select * from gpkg_spatial_ref_sys')[3,"description"]

[1] "longitude/latitude coordinates in decimal degrees on the WGS 84 spheroid"

Note that the RSQLite package is a generic package for connecting to SQLite DBs. 
This means that GPKG files can be accessed and updated in its native storage format 
without intermediate format translations. Just putting a GPKG file on server with 
read and execute access allows users to connect and fetch data.

12  HTTP://WWW.GEOPACKAGE.ORG/ 
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Alternatively, it is also good idea to store point data in non-spatial format such as 
simple tables. For example, in comma-separated file format (.csv). A fast way to 
publish and share tabular data is to use Google Fusion Tables™. Google Fusion 
Tables have an API13 that allows accessing and using tabular data through various 
programming platforms. The limitation of using Google Fusion tables is however, 
data size (currently about 1GB per user) and similar data volume limits, so this 
platform should be only used as intermediate solution for smaller data sets.

FIGURE 9.3  DISPLAYING POINT DATA SET EBERG (USED IN THE PREVIOUS EXAMPLE) IN GOOGLE FUSION TABLES.

13  HTTPS://DEVELOPERS.GOOGLE.COM/FUSIONTABLES/ 
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GeoTIFF format is highly recommended for sharing raster data for the following 
reasons:

1. It is GDAL's default data format and much functionality for subsetting, 
reprojecting, reading and writing GeoTIFFs already exists (see GDAL utils).

2. It supports internal compression via creation options (e.g. 
“COMPRESS=DEFLATE”).

3. Extensive overlay, subset, index, translate functionality is available via 
GDAL and other Open Source software. Basically GeoTiff functions as a 
raster DB.

Consider for example the gdallocationinfo14 function which allows spatial queries 
following some indexing system such as row and column number:

> spnad83.file = system.file("pictures/erdas_spnad83.tif", package = "rgdal")[1]

> system(paste0('gdallocationinfo ', spnad83.file, ' 100 100'))

Report:

  Location: (100P,100L)

  Band 1:

    Value: 107

 
Such type of overlay operations, thanks to GDAL (Warmerdam, 2008), are 
extremely fast and efficient. Likewise, gdalwarp function can be used subset rasters 
based on spatial extent or grid index. Rasters imported to GeoServer and shared 
through Web Coverage Service (see next section) or similar likewise function as a 
spatial raster DB.

As a general recommendation, and to avoid large file sizes, we recommend, however, 
that you always use integers inside GeoTiffs because floating point formats can lead 
to up to 4+ times larger sizes (without any gains in accuracy). This might mean you 
have to multiply the values of the soil property of interest by 10 or 100, in order not 
to lose accuracy (e.g. multiply pH values by 10 before exporting your raster as a 
GeoTiff).

14  HTTP://WWW.GDAL.ORG/GDALLOCATIONINFO.HTML 
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9.2 WEB SERVICES - SERVING SOIL DATA USING WEB 
TECHNOLOGY

9.2.1 THIRD-PARTY SERVICES

If you are a data producer but with limited technical capacity and/or financial 
resources, then publishing geo-data through a third-party service could be very 
well that the easiest and most professional solution for you. Some commonly used 
commercial web-services to share geo-data are:

• Google MyMaps (https://www.google.com/mymaps)

• ArcGIS Online (https://www.arcgis.com/home)

• MapBox (https://www.mapbox.com)

• CARTO (https://carto.com)

All these have limitations and primarily suitable for sharing vector type data only. 
Their free functionality is very limited so before you start uploading any larger data 
sets, please check the size limits based on your account. Upgrading your license 
will allow you to increase storage and functionality so that even with few hundred 
dollars per year you could have a robust solution for sharing your data to thousands 
of users.

Soil data producers can also contact ISRIC, as World Data Centre for Soils, to 
request support for hosting and/or distributing their soil data in case they lack the 
technical capacity to do so themselves, while adhering to the data sharing agreement 
and licence set by the data producer.

9.2.2 GEOSERVER (WEB SERVING + WEB PROCESSING)

GeoServer (http://geoserver.org) is Open Source software solution for serving raster 
or vector data. It includes majority of the Open Geospatial Consortium Service 
standards: the Web Map Service, Web Coverage Service and Web Processing 
Service (Youngblood, 2013). Installation and maintenance of GeoServer is however 
not trivial and requires specialized technical staff. Web services can also entail  
significant costs depending on the amount of web-processing and web-traffic. For 
every medium to large size organization, it is probably a better idea to use the out-
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of-box solution for GeoServer which is the GeoNode (http://geonode.org). GeoNode 
also includes a web-interface and user-management system so that new layers can 
be uploaded to GeoServer through a web-form type interface.

Very important functionality of GeoServer are the OGC standard services such as the 
Web Coverage Service (WCS) and the Web Feature Service (WFS). WCS means 
that not only data views are available to users, but WCS can also do data translation, 
aggregation or resampling, overlay etc. Consider for example the SoilGrids WCS 
(which can also be opened in QGIS or similar software supporting WCS). Users 
can direct this WCS and request only a subset of data for some area, aggregated to 
some preferred resolution / pixel size by using gdal_translate or similar. This means 
that, in few steps, users can download a subset of data on GeoServer in a preferred 
format without a need to download the whole data set.

FIGURE 9.4 SOILGRIDS (HENGL ET AL. 2017) WCS OPENED IN QGIS.
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9.2.3 VISUALIZING DATA USING LEAFLET AND/OR GOOGLE EARTH

A quick way to visualize produced soil maps and then share them to users without 
GIS capacities is to use Leaflet package15. Leaflet is basically a stand-alone web-
page that contains all information (including some popular Web Mapping Services) 
so that users can visually explore patterns without having to install and use any 
desktop GIS. Consider the following example:

> library(leaflet)

> library(htmlwidgets)

> library(GSIF)

> library(raster)

> demo(meuse, echo=FALSE)

> omm <- autopredict(meuse["om"], meuse.grid[c("dist","soil","ffreq")],

method="ranger", auto.plot=FALSE, rvgm=NULL)

> meuse.ll <- reproject(meuse["om"])

Reprojecting to +proj=longlat +datum=WGS84 ...

> m = leaflet() %>% addTiles() %>%

addRasterImage(raster(omm$predicted["om"]), colors = SAGA_pal[[1]][4:20])

%>% addCircles(lng = meuse.ll@coords[,1], lat = meuse.ll@coords[,2],

color = c('black'), radius=meuse.ll$om)  

> saveWidget(m, file="organicmater_predicted.html")

15  HTTPS://RSTUDIO.GITHUB.IO/LEAFLET/ 
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FIGURE 9.5  SAMPLED LOCATIONS AND PRODUCED PREDICTIONS VISUALIZED USING LEAFLET PACKAGE.

 
Note that the whole data set including styling and legends is basically available 
through a single html file (organicmater_predicted.html). Anyone opening that html 
in their browsers will get an interactive web-map that contains both samples and 
spatial predictions.

An alternative to using Leaflet is to put all data, including documents and multimedia, 
about your project in a KML (Keyhole Markup Language) file, so the data is 
available for viewing in Google Earth (Hengl et al. 2015). KML is very rich in what 
it can incorporate: textual data, photographs, documents, animations, videos etc. In 
fact, probably whole projects can be put into a single KML files so that the users 
only need to open it in Google Earth and then explore interactively. Note that KML 
files with ground overlays will be generated by GeoServer by default, although 
further customization is up to the data producer.
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9.3. PREPARING SOIL DATA FOR DISTRIBUTION

9.3.1 METADATA

One important thing to consider prior to data distribution is construction of 
metadata (explanation of data, how was it produced and what are the exact technical 
specifications). There are several metadata standards that can be used to prepare 
metadata. More recently, complete and consistent metadata is a requirement by many 
government agencies and organizations. There are now several public metadata 
validators16 that run all possible consistency and completeness checks before the 
metadata (and data) can be accepted.

Typical metadata should (at least) contain:

• DETAILED DESCRIPTION OF THE VARIABLES AVAILABLE IN THE DATA.

• DATA LICENSE AND TERMS OF USE (URL).

• EXPLANATION OF MEASUREMENT METHODS AND UNITS USED.

• MENTION OF THE REFERENCE SUPPORT SIZE INCLUDING REFERENT DEPTH 
INTERVALS TO WHICH THE SOIL DATA REFERS TO (E.G. 0–30 CM DEPTH 
INTERVAL).

• MENTION OF THE REFERENT TIME PERIOD IN WHICH THE CALIBRATION DATA 
WAS COLLECTED.

• LINK TO LITERATURE (REPORT, BOOK OR SCIENTIFIC ARTICLE) WHERE THE 
DATA PRODUCTION IS EXPLAINED IN DETAIL. USING A PUBLISHED AND 
PEER-REVIEWED SCIENTIFIC ARTICLE AS THE MAIN REFERENCE FOR DATA 
IS A GOOD PRACTICE SINCE IT ALSO SHOWS THAT THE DATA PRODUCTION 
PROCESS HAS BEEN EVALUATED BY INDEPENDENT RESEARCHERS.

• PROJECT HOMEPAGE I.E. URL CONTAINING MORE INFORMATION AND 
ESPECIALLY UP-TO-DATE CONTACTS WHERE USERS CAN FIND ORIGINAL 
DATA PRODUCERS AND REQUEST SUPPORT.

D
E F I N I T I O

N

16  E.G. HTTPS://MRDATA.USGS.GOV/VALIDATION/ 
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Metadata (including color legends) can be also directly embedded into the GeoTiff 
file by using the gdal_edit command17 available in GDAL. The following example 
shows how to add a simple explanation of the data and a URL to find more info 
about the GeoTiff:

> data("eberg_grid")

> gridded(eberg_grid) = ~ x+y

> proj4string(eberg_grid) <- CRS("+init=epsg:31467")

> writeGDAL(eberg_grid["DEMSRT6"], "eberg_DEM.tif", options="COMPRESS=DEFLATE")

> ?eberg

> system(paste0('gdal_edit.py -mo \"DESCRIPTION=elevation values from the 

SRTM DEM\" -mo \"DOWNLOAD_URL=http://geomorphometry.org/content/ebergotzen\"

eberg_DEM.tif '))

> system('gdalinfo eberg_DEM.tif ')

Driver: GTiff/GeoTIFF

Files: eberg_DEM.tif

Size is 100, 100

Coordinate System is:

PROJCS["DHDN / 3-degree Gauss-Kruger zone 3",

...

Origin = (3570000.000000000000000,5718000.000000000000000)

Pixel Size = (100.000000000000000,-100.000000000000000)

Metadata:

  AREA_OR_POINT=Area

  DESCRIPTION=elevation values from the SRTM DEM

  DOWNLOAD_URL=http://geomorphometry.org/content/ebergotzen

Image Structure Metadata:

  COMPRESSION=DEFLATE

  INTERLEAVE=BAND

Corner Coordinates:

Upper Left  ( 3570000.000, 5718000.000) ( 10d 0'36.93"E, 51d35'36.25"N)

Lower Left  ( 3570000.000, 5708000.000) ( 10d 0'29.77"E, 51d30'12.69"N)

Upper Right ( 3580000.000, 5718000.000) ( 10d 9'16.39"E, 51d35'31.46"N)

Lower Right ( 3580000.000, 5708000.000) ( 10d 9' 8.20"E, 51d30' 7.92"N)

Center      ( 3575000.000, 5713000.000) ( 10d 4'52.82"E, 51d32'52.16"N)

Band 1 Block=100x20 Type=Float32, ColorInterp=Gray

Similarly, all necessary metadata can be added into GeoTiff so that future users have 
all information at one place i.e. inside the data file. 

17  HTTP://WWW.GDAL.ORG/GDAL_EDIT.HTML 
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9.3.2 EXPORTING DATA — FINAL TIPS

As we have shown previously, if you export soil data into either GPKG and/or 
GeoTiff, these data can be accessed using DB operations. In fact, by exporting the 
data to GPKG and GeoTiffs, you have created a soil spatial DB or a soil information 
system. This does not necessarily mean that its targeted users will be able to find all 
information without problems and/or questions.

How usable and how popular a data set is, is a function of many aspects, not only 
data quality. You could create maps of perfect quality, but have no users at all. Some 
things you should definitively consider, as a way to boost usability of your data are: 

• MAKE A LANDING PAGE FOR YOUR DATA THAT INCLUDES: (1) SIMPLE ACCESS/
DOWNLOAD INSTRUCTIONS, (2) SCREENSHOTS OF YOUR DATA IN ACTION 
(PEOPLE PREFER VISUAL EXPLANATIONS WITH EXAMPLES), (3) LINKS TO 
KEY DOCUMENTS EXPLAINING HOW THE DATA WAS PRODUCED, AND (4) 
WORKFLOWS EXPLAINING HOW TO REQUEST SUPPORT (WHO TO CONTACT 
AND HOW).

• MAKE DATA ACCESSIBLE FROM MULTIPLE SYSTEMS E.G. BOTH VIA WCS, FTP 
AND THROUGH A MIRROR SITE. THIS MIGHT BE INEFFICIENT CONSIDERING 
THERE WILL BE MULTIPLE COPIES OF THE SAME DATA, BUT SOMETIMES IT 
QUADRUPLES DATA USAGE.

• EXPLAIN THE DATA FORMATS USED TO SHARE DATA, AND POINT TO 
TUTORIALS THAT EXPLAIN HOW TO ACCESS AND USE DATA TO BOTH 
BEGINNERS AND ADVANCED USERS.

• CONSIDER INSTALLING AND USING A VERSION CONTROL SYSTEM (OR SIMPLY 
USE GITHUB OR SIMILAR REPOSITORY) SO THAT THE USERS CAN TRACK BACK 
VERSIONS OF DATA.

• CONSIDER CLOSELY FOLLOWING PRINCIPLES OF REPRODUCIBLE RESEARCH18 
(ALL PROCESSING STEPS, INPUTS AND OUTPUTS ACCESSIBLE). THIS TUTORIAL 
COMES WITH R CODE19 THAT IS AVAILABLE VIA GITHUB SO THAT EVERYONE 
SHOULD BE ABLE TO REPRODUCE THE EXAMPLES SHOWN IN THE TEXT.

D
E F I N I T I O

N

18   HTTPS://ROPENSCI.ORG/BLOG/2014/06/09/REPRODUCIBILITY/ 

19  HTTPS://GITHUB.COM/ISRICWORLDSOIL/GSIF_TUTORIALS/BLOB/MASTER/SOILDATA/DATA_FORMATS_SOILDATA.R
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9.5 EXPORT FORMATS 

The produced results need to be exported in formats that can be easily read by a 
variety of GIS software. Two widely used formats for raster data are GeoTIFF and 
KML.

GeoTIFF is a public domain metadata standard which allows georeferencing 
information to be embedded within a TIFF file. The potential additional information 
includes map projection, coordinate systems, ellipsoids, datums, and everything 
else necessary to establish the exact spatial reference for the file. Keyhole Markup 
Language (KML) is an XML notation for expressing geographic annotation and 
visualization within Internet-based, two-dimensional maps and three-dimensional 
Earth browsers. KML became an international standard of the Open Geospatial 
Consortium in 2008. 

Raster data in GeoTIFF format need a defined geographic projection. Each country 
has its own national system (or systems). In order to construct a mosaic of national 
datasets a common projection has to be defined and national data need to be re-
projected in the common projection. Data projections can be managed using open 
source tools such as GIS softwares, GDAL tools suite (http://www.gdal.org) and various 
packages of the R software (https://www.r-project.org). Projections can be defined 
according to different standards. A common way is the EPSG database. EPSG 
Geodetic Parameter Dataset is a collection of definitions of coordinate reference 
systems and coordinate transformations which may be global, regional, national 
or local in application. A numeric code is assigned to each of the most common 
projections, making easier to refer to them and to switch between them. One of the 
most common global projections is WGS84 (EPSG 4336), used for maps and by the 
GPS satellite navigation system. 

Each file should be accompanied by a set list of metadata. Geospatial metadata 
is a type of metadata that is applicable to objects that have an explicit or implicit 
geographic extent. While using GeoTIFF files it is possible to define a metadata 
field in which information can be recorded. Metadata can be edited with most GIS 
software and directly with GDAL tools (http://www.gdal.org/gdal_edit.html). 
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GDAL:  gdalwarp -t_srs 'xxx' input.tif output.tif where t_srs is the target spatial 
reference set, i.e. the coordinate systems that can be passed are anything supported by 
the  GRSpatialReference.SetFromUserInput() call, which includes EPSG PCS and 
GCSes (i.e. EPSG:4326), PROJ.4 declarations or the name of a .prj file containing 
well known text. For further information see http://www.gdal.org/gdalwarp.html 
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10. TECHNICAL OVERVIEW AND THE 
CHECKLIST

10.1  POINT DATASET 

DID YOU REMOVE NON-GEOREFERENCED OBSERVATIONS FROM YOUR DATASET?

DID YOU CHECK FOR OUTLIERS OR ANY UNUSUAL VALUES FOR THE MEASURED 
SOC, PH, BD, STONINESS/GRAVEL CONTENT, AND MIN/MAX DEFINITIONS OF 
YOUR SOIL HORIZONS?

IS THERE SPATIAL CORRELATION IN YOUR SOC VALUES, AS OBSERVED FROM THE 
VARIOGRAM?

DID YOU CHECK THE PROBABILITY DISTRIBUTION AND APPLIED A 
TRANSFORMATION IN CASE THE SAMPLES WERE NOT NORMALLY DISTRIBUTED?

BE AWARE WHETHER YOU ARE GOING TO PREDICT SOC OR SOM VALUES!

S T E P

  
 
 

10.2  COVARIATES 

DID YOU CHOOSE AND APPLY THE PROPER PROJECTION, ONE THAT IS SUITABLE 
FOR YOUR COUNTRY AND IS SUITABLE FOR SPATIAL STATISTICS? 

DO ALL THE COVARIATES HAVE A RESOLUTION OF 1 KM, AND DID YOU USE 
EITHER NEAREST NEIGHBOUR RESAMPLING FOR THE CATEGORICAL VARIABLES 
AND IDW/CUBIC SPLINE FOR CONTINUOUS DATA? 
 
DID YOU CORRECTLY SET THE NODATA VALUES AS NODATA, I.E. NOT A STANDARD 
ASSIGNED VALUES SUCH AS -9999, 256 ETC.

DID YOU CHECK FOR OUTLIERS OR ANY UNUSUAL VALUES, ESPECIALLY IN YOUR 
DEM LAYER(S)?

DID YOU SET ANY CATEGORICAL DATASET AS ‘FACTOR’ INSTEAD OF BEING 
‘NUMERIC’ OR ‘INTEGER’?

S T E P
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10.3  STATISTICAL INFERENCE 

DID YOU CHOOSE A PROPER MODEL WHICH IS CAPABLE TO MODEL THE 
VARIABILITY IN YOUR SOC POINT DATA BEST? (MULTIPLE REGRESSION OR DATA 
MINING WITH OR WITHOUT INTERPOLATION OF THE RESIDUALS USING KRIGING)?

DID YOU MAKE SURE THAT THE RANDOM FOREST DID NOT OVER FIT YOUR DATA?

DID YOU APPLY A VALIDATION SCHEME, E.G. K-FOLD CROSS-VALIDATION OR 
AN INDEPENDENT VALIDATION, IF SO REPORT THE R2 AND RMSE AS ACCURACY 
MEASURES

DO THE MODEL SUMMARIES MAKE SENSE? I.E. MOST IMPORTANT PREDICTOR 
VARIABLES AND MODEL FIT?

IS THERE SPATIAL STRUCTURE LEFT IN YOUR RESIDUALS, IF SO MAKE SURE YOU 
INTERPOLATE THE MODEL RESIDUALS USING KRIGING?

S T E P

 
 
 
 
 

10.4  SPATIAL INTERPOLATION 

DID YOU OBTAIN AN EXHAUSTIVE MAP OR ARE THERE STILL GAPS? 
IF SO, CHECK IF YOUR RASTER HAS THE CORRECT ‘FACTOR’ VALUES. 
 
DO THE PATTERNS MAKE SENSE OR IS THERE A COVARIATE THAT CAUSES 
AN UNREALISTIC PATTERN, BASED ON EXPERT JUDGEMENT. IF SO, CONSIDER 
REMOVING THIS COVARIATE?

IN CASE YOU DID KRIGING, DON’T FORGET TO LOOK AT THE KRIGING VARIANCE. 
THIS IS A VERY IMPORTANT INDICATOR OF THE ACCURACY. OTHERWISE, 
CONSIDER MODELLING THE 90% CONFIDENCE INTERVALS OF THE PREDICTIONS!

DON’T FORGET TO BACK-TRANSFORM YOUR PREDICTED VALUES!

S T E P
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10.6  CALCULATION OF STOCKS 

YOU MIGHT WANT TO CALCULATE STOCKS PER LU TYPE, MANAGEMENT TYPE 
OR BY MUNICIPALITY.  IF YOU DO THAT MAKE SURE YOU GIVE AN INFORMED 
NUMBER, I.E. AN ESTIMATE PLUS AN ESTIMATE OF THE UNCERTAINTY

S T E P

 

10.7  EVALUATION OF OUTPUT/ QUALITY ASSESSMENT 

REPORT THE MODEL CALIBRATION AND VALIDATION STATISTICS!

REPORT SOME MAP QUALITY MEASURES!

EVALUATE TO WHICH EXTENT THE MODEL AND MAP IS EITHER 
UNDERESTIMATING OR OVERESTIMATING SOC/SOM!

DESCRIBE THE SPATIAL PATTERNS AND RELATE THEM TO THE LANDSCAPE 
CHARACTERISTICS!

S T E P
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11 .  DELIVERABLES

Data shared by countries will be collected by the GSP Secretariat. The GSP data 
policy (see GSP GSOC Guidelines, Chapter 8.5) will ensure that the national terms 
of condition are fully respected.  Data will be shared using common GIS formats, 
and metadata should be compiled in an excel file. The Soil Organic Carbon Map will 
be delivered as grid using the 30 arc-seconds grid.

The following data will be delivered;

• The Soil Organic Carbon Map: will be digitally delivered in grid with 30 
arc-seconds resolution. An empty grid is provided by the GSP Secretariat 
(ftp://gsp.isric2.org/&lt;countryname&gt;/mask/mask.tif). The SOC values should be 
transferred to this empty grid from the produced SOC data. To transfer 
values to the empty grid, QGis (Raster Calculator), ArcGIS (Mosaicing 
tool, Raster Calculator) can be used.  

• Uncertainty Layers and prediction quality figures: a) Qualitative 
assessment (Conventional Upscaling) b) Quantitative assessment for DSM 
Methods. The uncertainty associated to the estimated map quality measures 
will be provided (Mean Error (ME), Mean Absolute Error (MAE), and 
MSE (Mean Squared Error).

• Metadata : Metadata is data describing data sets. It provides standardized 
information about a data set, for example, the maintaining institution through 
which the data can be accessed. It thus helps a user to find spatial data sets 
and services and to indicate for which purpose it can be used. 

In the case of the GSOC maps, a project-specific metadata template has been prepared. 
It deviates from the metadata elements listed in common standards such as ISO 
19115. Following the guideline for SOC mapping18, the importance of soil-specific 
methodical elements is given. This includes metadata describing the data sources used 
for SOC mapping (Annex I -Table A) and the upscaling method (Annex I - Table B). 

18   PILLAR 4 WORKING GROUP (2017). GSP GUIDELINES FOR SHARING NATIONAL DA-TA/INFORMATION TO COM-
PILE A GLOBAL SOIL ORGANIC CARBON (GSOC) MAP. VERSION 1. FAO, ROME, 2017.
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ANNEX I

Table A Documentation of soil carbon measurements (soil profile/auger data) 
and pre-processing (SOC stock assessment)

Metadata elements soil carbon Description/examples

Soil sampling Type of sampling soil profile or auger

Programme for data collection soil mapping (provide scale if 
scale-specific), soil monitoring 
(any repetitions), other 
(<specify>)

Sampling period e.g. 1960-1975

Total number of soil profiles 
(auger locations)

<number>

Provide map of sample locations 
(e.g. soil profiles)

Georeferencing e.g. coordinates in ETR89

Depth Depth classes, e.g. 0-5 cm, 5-10 
cm, etc.

Soil horizons, cite national soil 
mapping/sampling guide

Distribution of locations random, systematic (e.g. transect, 
catena, toposequence), land use

Soil (organic) carbon Measuring unit e.g. g/kg

if estimated: estimation method

(e.g. estimated using a soil color 
chart, calibrated for SOC classes)

provide method, tables (codes 
and classes), example

if analyzed SOC analysis method: Loss 
ignition (LoI), Wet Oxidation 
(wet ox), Dry combustion (DC)

- provide name of the method

- sample preparation (air dried, 
oven dried, grounded, sieved),

- for LoI, DC: temperature

- for wet ex: agents, 
concentrations, recovery factor
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Soil inorganic carbon analysis method  

measuring unit  

Bulk density Measuring/estimation unit e.g. g/cm3

if estimated: Pedotransfer function, literature 
default values

provide method details

if analysed  provide details about the 
sampling: size, number, location 
of cylinders, stones in the 
cylinders were accounted for yes/
no

Coarse fragments Measuring/estimation unit e.g. % volume

Organic layers Sampling and description method provide details

Peat Sampling and description method provide details

 

Table B  Documentation of the national soil carbon stock map 
(upscaling, spatial input layers)
 

Metadata elements upscaling Description/examples

Contact information 
for this resource 

Name(s)

Institute(s)

Phone(s)

E-mail(s)

Keywords

Upscaling method conventional upscaling, 
regression kriging, random 
forest, other

<specify>

Representation type Vector/Raster
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Update frequency 
 
  
  

In Years/Months etc

or Not Planned

 

Scale/Resolution

 Metre, Kilometre, Arc-Seconds

-  

-  

Coordinate reference 
system 

 

 

 

 

 Citation   
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