

Towards efficient workflows for soil data standardisation and model integration

Niels H. Batjes*, Eloi Ribeiro, Ad van Oostrum, Bas Kempen, Rik van den Bosch BONARES Conference (26 - 28 February 2018, Berlin)

Roadmap

- ISRIC mission
- Standardising/harmonising soil profile data
- Automated production of soil property maps
- Use of quality-assessed soil information
- Spatial data infrastructurand inter-operability
- Concluding remarks

Simplified representation of ISRIC's workflow & Spatial Data Infrastructure

User needs vary at different scales

World Soil Information

Key areas of harmonization

"Providing mechanisms for the collation, analysis and exchange of consistent and comparable global soil data and information" (GSP Pillar V)

Main standardisation steps

- Basic quality control
- Identify repeated profiles
- Attribute names
- Units (incl. conversion factors)
- Measured values
- Analytical method descriptions.

Soil observations and measurements (**O&M**):

- Feature (georeferenced profiles & layers ; x,y,z and time)
- Attributes: layer-field (O) or layer-lab (M)
- Method
- Value, including units of expression

Lineage:

Datasets, reports & maps

Current focus: GlobalSoilMap specifications					
pН					
Organic carbon					
CEC					
Bulk Density					
Water Holding Capacity b					
Calcium carbonate equivalent					
Sand, silt, clay fractions					
Coarse fragments (>2mm; as volume percent of whole soil)					
Electrical conductivity					

Standardise analytical method descriptions

- Characterise major components of commonly used analytical methods for measuring a given soil property
- Criteria and coding steps are shown in flowcharts

	Procedure				
Key	ISO ⁵	ISRIC ⁶	USDA ⁷	WEPAL ⁸	
Pretreatment	<2 mm	<2 mm	<2 mm	<2 mm	
Solution	KCI	KCI	KCI	KCI	
Concentration	1 M	1 M	1 M	1 M	
Ratio	1:5	1:2.5	1:1	1:5	
Ratio base	v/v	w/v	w/v	v/v	
Instrument	Electrode	Electrode	Electrode	Electrode	

Harmonise to reference method 'Y'

- Make the data comparable, as if assessed by a single given (reference) method 'Y'.
- No universal equation for converting from one method to another.
- Need 'region-specific' conversions to a given reference method Y, building on comparative analyses of reference soil samples (GSP WG5; GLOSOLAN).

Example regression functions for converting values of pH between different methods

No. Target Method (Y)	Source Method (X)	Equation	R2	Reference
1 pH (1:1 0.01 m CaCl2)	pH (1:1 water)	y = 1.08(x) - 0.973	0.98	Miller and Kissel (2010)
2 pH (1:1 0.01 m CaCl2)	pH (saturated paste)	y = 1.10 (x) - 0.923	0.98	Miller and Kissel (2010)
3 pH (1:1 0.01 m CaCl2)	pH (1:2 water)	y = 1.05 (x) - 0.950	0.97	Miller and Kissel (2010)
4 pH (1:1 water)	pH (1:1 0.01 m CaCl2)	y = x + 0.267 (EC 1:1 water) ^{-0.445}	0.99	Miller and Kissel (2010)
5 pH (1:2 water)	pH (1:1 0.01 m CaCl2)	y = x + 0.239 (EC 1:1 water) ^{-0.505}	0.98	Miller and Kissel (2010)
6 pH (1:5 0.01 m CaCl2)	pH (1:5 water)	y = 1.012 (x) - 0.76	0.99	Conyers and Davey (1988)
7 pH (1:5 0.01 m CaCl2)	pH (1:5 water)	y = 0.979 (x) - 0.71	0.68	Bruce et al., (1989)
8 pH (1:5 0.01 m CaCl2)	pH (1:5 water)	y = 0.887 (x) - 0.199	0.88	Aitken and Moody (1991)
9 pH (1:5 0.01 m CaCl2)	pH (1:5 water)	y = 0.197 (x) ² - 1.21 (x) + 5.78	Sc	ource: GlobalSoilMa
10 pH (1-5 0 002 m Co(12)	pH (1:5 water)	v = 0.049 (v) 0.209		

Serve the standardised data

• WFS (dynamic): http://data.isric.org/geoserver/wosis_latest/wfs

• CSV (snapshot): Earth Syst. Sci Data 9, 1-14

Earth Syst. Sci. Data, 9, 1-14, 2017 https://doi.org/10.5194/essd-9-1-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

Article

WoSIS: providing standardised soil profile data for the world

Distribution of profiles

x, y, z & t

Normalised and *structurally sound* data model serving:

- ~110 thousand geo-referenced profiles; corresponds with ~30M soil records of which ~4M have been standardised so far:
 - Bulk density
 - Calcium carbonate
 - Carbon (Total & Organic)
 - Cation exchange capacity
 - Coarse fragments
 - Electrical conductivity
 - pH
 - Water retention
 - Texture (Sand, Silt, Clay)
 - Total Nitrogen
 - Available P (different methods)
 - Classification: FAO, WRB, USDA Soil Taxonomy (year)
 - Horizon designation (cleaned only)

From points to grids: Digital soil mapping

Apply statistical models to predict soil functional properties at unobserved locations in the landscape: $s_i = f(Q)_i + e_i$

Fit model(s)

SoilGrids

- Automated soil information system
- Uses **profile** data and **spatial** information (covariates)
- Machine learning algorithms
- Presently: 250 m * 250 m **resolution** (7 depths to 2 m; GSM specs)
- Accessible through **web service** and mobile phone **app**
- Updatable
- Open data
- Moving towards crowdsourcing

SoilGrids clay content at 15 cm (%) depth

Hengl et al., 2017 PLOS ONE 12, e0169748

Use of quality-assessed soil information

Spatial Data Infrastructure

World Soil Information

Towards a globally distributed system

World Soil Information

Draft - work in progress ...

Exchanging 'trustworthy' open soil data, using FAIR principles ...

Concluding remarks

- The soil science community should ensure that soil data can be utilised to take effective measures at the desired scales.
- In partnership, we have developed a framework for collating, standardising, mapping, analysing and sharing world soil data.
- The system allows for regular updates of world soil information at user-defined resolutions (250m to 50km).
- We are pro-active in developing soil data inter-operability and exchange formats to underpin the GSP Soil Data Facility.
- There is still much to do; being a small organization ISRIC (WDC-Soils) can only do this in collaboration.

'ISRIC welcomes cooperation on data sharing and use'

