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ABSTRACT

This paper describes the technical development and accuracy assessment of the most recent and improved version
of the SoilGrids system at 250 m resolution (June 2016 update). SoilGrids provides global predictions for standard
numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and
coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to
bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems
(ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158
remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic
images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods
— random forest and gradient boosting and/or multinomial logistic regression — as implemented in the R packages
ranger, xgboost, nnet and caret. The results of 10–fold cross-validation show that the ensemble models explain between
56 % (coarse fragments) and 83 % (pH) of variation with an overall average of 61 %. Improvements in the relative
accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial
resolution, range from 60 to 230 %. Improvements can be attributed to: (1) the use of machine learning instead of linear
regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional
soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties
and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil
maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of
methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m
spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced.
SoilGrids are available under the Open Data Base License.

Preprint accepted for publication in PLOS One on December 21st 2016.

Introduction 1

There is a growing demand for detailed soil information, especially for global estimation of soil organic carbon1–3
2

and for modeling agricultural productivity4, 5. Spatial information about soil water parameters is likely to become 3



increasingly critical in areas affected by climate change6. Soils and soil information are also particularly relevant 4

for the Sustainable Development goal target 15.3 of achieving Land Degradation Neutrality (LDN), as specified by 5

the United Nations Convention to Combat Desertification (UNCCD; http://www.unccd.int), and are one of the 6

main areas of interest of the FAO’s Global Soil Partnership initiative7. Folberth et al.8 have recently discovered that 7

accurate soil information might be the key to predicting either buffering or amplifying impacts of climate change on 8

food production. 9

To reduce the gap between soil data demand and availability, ISRIC (International Soil Reference Information 10

Centre) — World Soil Information released a Global Soil Information system called “SoilGrids”. The first version of 11

SoilGrids (predictions at 1 km spatial resolution released in 2014), was, at the time, a ‘proof of concept’ demonstrating 12

that global compilations of soil profiles can be used in an automated framework to produce complete and consistent 13

spatial predictions of soil properties and classes9. Since the launch of the system in 2014, several colleagues have 14

recognized and reported some of the limitations of the first version of the system. Mulder et al.10 observed, using 15

more detailed soil profile data and maps, that SoilGrids likely overestimated all low values for organic carbon 16

content in France. Likewise, Griffiths et al.11 reported underestimation of the pH in comparison to UK national 17

data. The overestimation of low values happened mainly as an effect of limited fitting success (so that both high and 18

low values are smoothed out). In addition, many of the artifacts visible in the Harmonized World Soil Database 19

(HWSD)12, which was used as one of the covariates to produce the first version of SoilGrids, e.g. country borders, 20

were propagated to SoilGrids1km. Some users have also expressed concerns that the first version of SoilGrids did 21

not provide predictions for arid and desert areas and hence can be considered an incomplete product13. 22

To address these criticisms and concerns, we have re-designed and re-implemented SoilGrids with a particular 23

emphasis on addressing methodological limitations of SoilGrids1km. Hence, our main objective was to build a 24

more robust system with improved output data quality; especially considering spatial detail and attribute accuracy of 25

spatial predictions. We implemented the following six key improvements: 26

1. We replaced linear models with tree-based, non-linear machine learning models to account for non-linear 27

relationships — especially for modeling soil property–depth relationships — but also to be able to better 28

represent local soil–covariate relationships. Predictions are now primarily data-driven. Much less time is 29

spent on choosing models, which also reduces the complexity of producing updates. 30

2. We replaced single prediction models with an ensemble framework i.e. we use at least two methods for each 31

soil variable to reduce overshooting effects. 32

3. We extended the initial list of covariates to include a wider diversity of MODIS land products and to better 33

represent factors of soil formation. The spatial resolution of covariates was increased from 1 km to 250 m 34

with the expectation that finer resolution will help increase the prediction accuracy. 35

4. We re-implemented the global soil mask using state-of-the-art land cover products14. The current soil mask 36

now includes all previously excluded drylands and sand dunes areas so that most of the land mask (>95 %) is 37

represented. 38

5. The global compilation of soil profiles and samples used for model training was also extended. We added 39

extra points for the Russian Federation, Brazil, Mexico and the Arctic circle; and re-visited data harmonization 40

issues. 41

6. We created and inserted expert-based pseudo-points for a selection of parameters to minimize extrapolation 42

effects in undersampled geographic areas lacking field observations, such as deserts, semi-deserts, glaciers 43

and permafrost areas. 44

We present here the technical development and accuracy assessment of the updated SoilGrids system at 250 m 45

resolution. In the following sections we describe the workflows used to generate spatial predictions and report results 46

of model fitting and accuracy assessment based on 10–fold cross-validation. We conclude the article by suggesting 47
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some possible applications of this new data set and identifying possible future improvements. SoilGrids250m map 48

layers are available for download via www.SoilGrids.org under the Open Database License (ODbL). GeoTiffs 49

can also be obtained from ftp://ftp.soilgrids.org/data/. 50

Methods and materials 51

Target variables 52

SoilGrids provides predictions for the following list of standard soil properties and classes9: 53

• Soil organic carbon content in ‰ (gkg−1), 54

• Soil pH in H2O and KCl solution, 55

• Sand, silt and clay (weight %), 56

• Bulk density (kgm−3) of the fine earth fraction (<2 mm), 57

• Cation-exchange capacity (cmol+/kg) of the fine earth fraction, 58

• Coarse fragments (volumetric %), 59

• Depth to bedrock (cm) and occurrence of R horizon, 60

• World Reference Base (WRB) class — at present, we map 118 unique soil classes, e.g. Plinthic Acrisols, 61

Albic Arenosols, Haplic Cambisols (Chromic), Calcic Gleysols and similar15. This is about four times as 62

many classes than in the previous version of SoilGrids, 63

• United States Department of Agriculture (USDA) Soil Taxonomy suborders — i.e. 67 soil classes16. 64

We generated predictions at seven standard depths for all numeric soil properties (except for depth to bedrock and
soil organic carbon stock): 0 cm, 5 cm, 15 cm, 30 cm, 60 cm, 100 cm and 200 cm, following the vertical discretisation
as specified in the GlobalSoilMap specifications17. Averages over (standard) depth intervals, e.g. 0–5 cm or 0–30 cm,
can be derived by taking a weighted average of the predictions within the depth interval using numerical integration,
such as the trapezoidal rule:

1
b−a

∫ b

a
f (x)dx ≈ 1

(b−a)
1
2

N

∑
k=1

(xk+1 − xk)( f (xk)+ f (xk+1)) (1)

where N is the number of depths, xk is the k-th depth and f (xk) is the value of the target variable (i.e., soil property) at 65

depth xk. For example, for the 0–30 cm depth interval, with soil pH values at the first four standard depths equal to 4.5, 66

5.0, 5.3 and 5.0, the pH is estimated as 1
30·2 ·[(5−0) · (4.5+5.0)+(15−5) · (5.0+5.3)+(30−15) · (5.3+5.0)]/30· 67

0.5 = 5.083 (Fig 1). 68

Based on predictions of soil organic carbon content, bulk density, and coarse fragments, we also derived soil 69

organic carbon stock (tha−1) for the six GlobalSoilMap standard depth intervals following the standard approach9, 18. 70

Fig 2 shows an example of observed vs predicted values and corresponding derived soil organic carbon stock for 71

0–1 m and 1–2 m depths. 72

Model fitting and spatial prediction of depth to bedrock is based also on water well drilling data. Model fitting 73

and spatial prediction of soil depth to bedrock variables is explained in detail in Shangguan et al.19. 74

We set the reference soil surface at the air/soil boundary, as per FAO20, hence all soil material is included. Some 75

national soil survey teams (and also earlier versions of the FAO standards) define 0 cm depth at the start of the 76

mineral soil, i.e. just below the O or the P (peat) horizon. Consider for example the following sample soil profile 77

from Canada21: 78
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Figure 1. Standard soil depths following the GlobalSoilMap.net specifications and example of numerical
integration following the trapezoidal rule.

hor top bottom bd orgcarb 79

LFH -12 0 0.07 48.1 80

Ae 0 11 1.3 0.6 81

AB 11 25 1.53 0.4 82

Bt 25 44 1.62 0.4 83

which shows that the vertical coordinates of the organic layer of this soil site are negative (LFH indicates Litter – 84

Fermentation – Humus); orgcarb indicates soil organic carbon, bd is the bulk density and top and bottom are the 85

upper and lower horizon depth in cm). Therefore, to avoid vertical mismatches between different national systems, 86

all systems that put the zero level at the start of the mineral soil have been adjusted to a reference with the zero level 87

at the air/soil boundary. For the example soil profile from Canada this means that 12 cm was added to all top and 88

bottom values (in the example above, there is a significant discontinuity in values in organic carbon that drops from 89

48.1 % to 0.6 % within 12 cm of depth). 90

Input profile data 91

For model building, we used soil profile data from ca. 150,000 unique sites spread over all continents (Fig 3; see 92

acknowledgments for a full list). These have been imported, cleaned and merged into a single global compilation of 93

soil points with unique column names and IDs. 94

Preparation of the global compilation of standardized soil training points took several months of work. The 95

translation and cleaning up of soil properties and soil classes took a large amount of time. About 15–20 % of the 96

original soil profile data was only reported using a national classification system, e.g. the Canadian and Brazilian 97

classification systems. Since some information is better than none, where possible we translated national classification 98

systems to the two international (World Reference Base and USDA) classification systems. For translation we 99

used published correlation tables either reported in Krasilnikov et al.22 or reported on the agency websites; see 100

e.g. correlation of Canadian Soil Taxonomy published (http://sis.agr.gc.ca/cansis/taxa/) and correlation 101

of the Brazilian classification system (http://www.pedologiafacil.com.br/classificacao.php). We also 102
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Figure 2. Example of soil variable-depth curves: original sampled soil profiles (black rectangles) vs
predicted SoilGrids values at seven standard depths (broken red line), and predicted soil organic carbon
stock for depth intervals 0–100 and 100–200 cm. Locations of points from the USDA National Cooperative
Soil Survey Soil Characterization database: mineral soil S1991CA055001 (-122.37°W, 38.25°N), and an
organic soil profile S2012CA067002 (-121.62°W, 38.13°N).

consulted numerous local soil classification experts and requested their feedback and corrections in the (online) 103

correlation tables (distributed via Google spreadsheets). Some national classification systems, such as the Australian 104

soil classification system, are simply too different from the USDA and WRB systems to allow satisfactory correlation. 105

These data were therefore not used. The full list of correlation tables is available from ISRIC’s github account at 106

https://github.com/ISRICWorldSoil. 107

Another time-consuming operation was merging laboratory measurements and field observations and their 108

harmonization to a standard format. In some cases missing values in the original tables had been coded as "0" values, 109

which can have a serious influence on prediction models; in other cases we implemented and applied functions to 110

locate and correct typos and other gross errors. Some variables, such as soil organic carbon, needed to be converted 111

either from soil organic matter (e.g. divide by 1.724) and/or by removing CaCO3 (Calcium carbonates) from total 112

carbon. Nevertheless, the majority of soil variables from various national soil profile data bases appeared to be 113

compatible and relatively easy to merge — soil scientists across continents do measure similar things, but often 114

express the results using different measurement units, vocabularies and standards. 115

We imported all original tables as-is, next documented all conversion functions through R scripts (available via 116

ISRIC’s github account), to accommodate reproducible research and facilitate that conversion functions may, in 117

the future, be further modified and improved. The majority of the points (excluding LUCAS points and other data 118

sets with specific restricting terms of use) and legends used for model building and for producing SoilGrids are also 119

available for public use via ISRIC’s WoSIS Web Feature Service (http://www.isric.org/data/wosis) and/or 120
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Figure 3. Input profile data: world distribution of soil profiles used for model fitting (about 150,000 points
shown on the map; see acknowledgments for a complete list of data sets used). Yellow points indicate
pseudo-observations. For the majority of points shown on this map, laboratory data can be accessed from
ISRIC’s World Soil Information Service (WoSIS) at http://wfs.isric.org/geoserver/wosis/wfs.

the ISRIC’s institutional github account. 121

Expert-based pseudo-observations 122

Even though the input training point data are extensive and cover most continents and climatic zones, some large 123

areas that have extreme climatic conditions and/or are of very restricted access, are significantly undersampled. This 124

occurs largely in the following four types of areas: 125

1. Semi-arid and arid lands, deserts and sand dunes, 126

2. Mountain tops, steep slopes of mountains and similar inaccessible areas, 127

3. Areas covered by ice and/or snow, i.e. glaciers, 128

4. Inaccessible tropical forest, 129

5. Areas governed by totalitarian and hostile regimes, with military conflicts or war. 130

It might seem obvious to soil surveyors that there is no soil organic carbon in the top 2 m of the active sand 131

dunes of the Sahara, but any model fitted without observations in the Sahara could result in dubious extrapolation 132

and questionable predictions. In addition, relationships across transitional areas — from semi-arid zones to deserts 133

— can be difficult to represent without enough points at both edges of the feature space. Some sand dunes in the 134

USA have been actually sampled and analyzed in the laboratory. For example, Lei23 has shown that sand dunes in 135

the Mojave desert have an average pH of 8.1, 98 % sand and 0 % organic carbon. Again, although it might seem 136

obvious that deserts consist mainly of sand, and that steep slopes without vegetation are either very shallow or 137

show bedrock at the surface, the model is not aware of such expert knowledge and hence such features need to be 138

‘numerically represented’ in the calibration dataset. We therefore decided, instead of masking out all such areas from 139

soil mapping, to insert pseudo-observations and fill gaps in the feature space for the first four types of areas listed 140

above, i.e. to add pseudo-observations to the training dataset, which we then use for model building. 141

We used the following data sources to delineate sand dunes, bare rock and glaciers and produce their respective 142

land masks: 143
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• Sand dunes mask — To delineate the global distribution of sand dunes we used mean annual long-term surface 144

temperature generated from the MODIS LST data product (MOD11A2), long-term MODIS Mid-Infrared 145

(MIR) band (MCD43A4) and a slope map. After visual inspection of the border of the Sahara desert, it 146

was clear that sand dunes can be relatively accurately delineated using MIR reflectance, mean daily annual 147

temperature (>25 ◦C) and a slope map (<25 rad). 148

• Bare rock mask — To delineate bare rock we also used the MODIS MIR band (MCD43A4) and a slope map. 149

Bare rock or dominantly rocky areas show high MIR surface reflectance and are associated with steep slopes 150

(>32 rad). To the initial mask map estimated using MODIS MIR band and slope map, we also added bare 151

rock areas from more detailed maps available for some countries, such as Iceland and northern Europe19. 152

• Glaciers mask — To represent global distribution of glaciers we used the GLIMS Geospatial Glacier 153

Database24. 154

For each of the three masks we then generated randomly 100–400 points based on the relative global extent and 155

assigned soil properties and soil classes accordingly (e.g. in the case of WRB’s Protic Arenosols for sand dunes, 156

Lithic and Rendzic Leptosols for bare rock areas, Cryosols for glaciers; in the case of USDA’s Psamments for sand 157

dunes, Orthents for bare rock areas and Turbels for glaciers; for sand dunes we also inserted estimated values of 0 158

soil organic carbon, 98 % sand and 0 % coarse fragments). For model training for predicting soil classes we also 159

used pseudo-observations generated from the best available soil polygon maps: for poorly accessible tropical forest 160

areas, such as Indonesia, we used the Land information system of Kalimantan25, and for northern latitudes, i.e. to 161

represent permafrost soils, the Northern Circumpolar Soil Carbon Database was used26. 162

When inserting pseudo-observations we tried to follow three simple rules of thumb to minimize any negative 163

effects: 164

• keep the relative percentage of pseudo-points small i.e. try not to exceed 1–2 % of the total number of training 165

points, 166

• only insert pseudo-points for which the actual ground value is known with high confidence, e.g. sand content 167

in sand dune areas, 168

• if polygon maps are used to insert pseudo-observations, we tried to use the most detailed soil polygon maps 169

and focus on polygons with very high thematic purity. 170

Soil covariates 171

As covariate layers for producing SoilGrids250m predictions we used an extensive stack of covariates, which are 172

primarily based on remote sensing data. These include (see e.g. Fig 4): 173

• DEM-derived surfaces — slope, profile curvature, Multiresolution Index of Valley Bottom Flatness (VBF), 174

deviation from Mean Value, valley depth, negative and positive Topographic Openness and SAGA Wetness 175

Index — all based on the global merge of SRTMGL3 DEM and GMTED201027. All DEM derivatives were 176

computed using SAGA GIS28, 177

• Long-term averaged monthly mean and standard deviation of the MODIS Enhanced Vegetation Index (EVI). 178

Derived using a stack of MOD13Q1 EVI images29, 179

• Long-term averaged mean monthly surface reflectances for MODIS bands 4 (NIR) and 7 (MIR). Derived 180

using a stack of MCD43A4 images30, 181

• Long-term averaged monthly mean and standard deviation of the MODIS land surface temperature (daytime 182

and nighttime). Derived using a stack of MOD11A2 LST images31, 183
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• Long-term averaged mean monthly hours under snow cover based on a stack of MOD10A2 8-day snow 184

occurrence images32, 185

• Land cover classes (cultivated land, forests, grasslands, shrublands, wetlands, tundra, artificial surfaces and 186

bareland cover) for the year 2010 based on the GlobCover30 product by the National Geomatics Center of 187

China14. Upscaled to 250 m resolution and expressed in percent of pixel coverage, 188

• Monthly precipitation images derived as the weighted average between the WorldClim monthly precipitation33
189

and GPCP Version 2.234, 190

• Long-term averaged mean monthly hours under snow cover. Derived using a stack of MOD10A2 8-day snow 191

occurrence images, 192

• Lithologic units (acid plutonics, acid volcanic, basic plutonics, basic volcanics, carbonate sedimentary rocks, 193

evaporite, ice and glaciers, intermediate plutonics, intermediate volcanics, metamorphics, mixed sedimentary 194

rocks, pyroclastics, siliciclastic sedimentary rocks, unconsolidated sediment) based on Global Lithological 195

Map GLiM35, 196

• Landform classes (breaks/foothills, flat plains, high mountains/deep canyons, hills, low hills, low mountains, 197

smooth plains) based on the USGS’s Map of Global Ecological Land Units36. 198

• Global Water Table Depth in meters; after Fan et al.37, 199

• Long-term averaged mean monthly MODIS Flood Water based on the NRT Global MODIS Flood Mapping 200

Flood Water product (http://oas.gsfc.nasa.gov/floodmap/), 201

• Landsat-based estimated distribution of Mangroves; after Giri et al.38, 202

• Average soil and sedimentary-deposit thickness in meters; after Pelletier et al.39. 203

These covariates were selected to represent factors of soil formation according to Jenny40: climate, relief, living 204

organisms, water dynamics and parent material. Out of the five main factors, water dynamics and living organisms 205

(especially vegetation dynamics) are not trivial to represent as these operate over long periods of time and often 206

exhibit chaotic behaviour. Using reflectance bands such as the mid-infrared MODIS bands from a single day, would 207

have little use to soil mapping for areas with dynamic vegetation, i.e. with strong seasonal changes in vegetation 208

cover. To account for seasonal fluctuation and for inter-annual variations in surface reflectance, we instead used 209

long-term temporal signatures of the soil surface derived as monthly averages from long-term MODIS imagery 210

(15 years of data). We assume here that, for each location in the world, long-term average seasonal signatures of 211

surface reflectance or vegetation index provide a better indication of soil characteristics than only a single snapshot 212

of surface reflectance. Computing temporal signatures of the land surface requires a considerable investment of time 213

(comparable to the generation of climatic images vs temporary weather maps), but it is possibly the only way to 214

represent the cumulative influence of living organism on soil formation. 215

For processing the covariates we used a combination of Open Source GIS software, primarily SAGA GIS28, R 216

packages raster41, sp42, GSIF and GDAL43 for reprojecting, mosaicking and merging tiles. SAGA GIS and GDAL 217

were found to be highly suitable for processing large data as parallelization of computing was relatively easy to 218

implement. 219

We updated the 1 km global soil mask map using the most detailed 30 m resolution global land cover map from 220

2010. This was combined with the global water mask44 and the global sea mask map based on the SRTM DEM45 to 221

produce one consistent global soil mask that includes all land areas, expect for: (a) fresh water bodies such as lakes 222

and rivers, and (b) permanent ice. 223
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Figure 4. Examples of covariates used to generate SoilGrids: TWI is the Topographic Wetness Index
(values multiplied by 100), EVI is the MODIS Enhanced Vegetation Index (values multiplied by 10,000), s.d.
LST is the long-term standard deviation of MODIS Land Surface Temperatures (values in Celsius degrees).
Location: San Francisco bay area, California. Size of the bounding box is 300 by 300 km.

Spatial prediction framework 224

Spatial prediction, i.e. fitting of models and generation of maps were fully implemented via the R environment for 225

statistical computing. The process of generating SoilGrids predictions consists of four main steps (see Fig 5): 226

• overlay points and covariates and prepare regression matrix, 227

• fit spatial prediction models, 228

• apply spatial prediction models using tiled raster stacks (covariates), 229

• assess accuracy using cross-validation. 230

For practical purposes, we implemented these steps separately for each of the following groups of soil variables: 231
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• WRB soil groups and USDA soil suborders were modelled using ensemble models based on nnet::multinom 232

(which fits multinomial log-linear models via neural networks)46 and ranger::ranger (fits random forest) 233

functions47. We mapped probabilities of occurrence for each individual soil class (118 probability maps for 234

WRB and 67 for USDA), 235

• Soil properties (organic carbon, bulk density, CEC, pH, soil texture fractions and coarse fragments) were 236

modelled as 3D variables using an ensemble of ranger::ranger and xgboost::xgboost (fits Gradient 237

Boosting Tree)48. Soil depth is used as a covariate, so that the resulting models predict values of a target 238

variable for any given depth, i.e. in 3D, 239

• Depth to bedrock was also modelled using ranger::ranger and xgboost::xgboost functions, but the 240

output is a 2D map. 241

To optimize the model tuning parameters we consistently used the caret::train function49, which is also 242

suited for big data. The fine-tuning of the parameters is summarized in the following three steps: 243

1. Randomly subset the regression matrix to e.g. 15,000 observations (usually 5–10 % of the total size), 244

2. Fit and validate a list of models for a combination of tuning parameters, 245

3. Select the optimal parameters (i.e. those that produce the lowest RMSE using repeated cross-validation) and 246

fit the final model using all observations. 247

Models for WRB and USDA classes are defined as: 248

R> TAXNWRB ~ DEMMRG5 + SLPMRG5 + ... + ASSDAC3 249

where DEMMRG5 + SLPMRG5 + ... + ASSDAC3 are the covariate layers, TAXNWRB is the observed taxonomic class 250

in the WRB system (target variable). An example of a soil property model is given by: 251

R> ORCDRC ~ Depth + DEMMRG5 + ... + ASSDAC3 252

where DEMMRG5 + ... + ASSDAC3 are the covariate layers, ORCDRC is the value of organic carbon observed (target 253

variable), and Depth is the sampling / observation depth. 254

For each variable we fitted a separate model and merged predictions from at least two models to minimize 255

overshooting effects50. The merging of predictions is done by using the average model accuracy estimated during 256

the fine-tuning of model parameters, i.e. as a weighted average50: 257

f̄ (x) = ∑
M
k=1 wk · fk(x)

∑
M
k=1 wk

, wk =
1

σ2
k,CV

(2)

where f̄ (x) is the final ensemble prediction, M is the number of models, wk is the model weight and σ2
k,CV 258

is the model squared prediction error obtained using cross-validation. In practice, both ranger::ranger and 259

xgboost::xgboost report about the same error in most cases, hence the final prediction is often close to the 260

unweighted average. 261

We also applied post-processing, mainly to remove artifacts: in the case of soil classes, we filter out all classes 262

theoretically impossible to occur in a given area, such as Gypsisols in arctic climatic zones, using a simple soil- 263

climate matrix (documented on the project github). For texture fractions we also applied a standardization function 264

to ensure that all predictions are between 0 and 100, and that the fractions sum up to 100 %, e.g.: 265

Sandc[%] =
Sand

(Sand+Silt+Clay)
·100 (3)
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Figure 5. The (data-driven) statistical framework used for generating SoilGrids. SoilGrids are primarily
based on publicly released soil profile compilations, NASA’s MODIS and SRTM data products and Open
Source software compiled with the ATLAS library: R (including contributed packages), and Open Source
Geospatial Foundation (OSGeo) supported software tools.

where Sandc is the corrected sand content. 266

SoilGrids can be considered as a Big Data project, especially in terms of data volumes and variety. The total size 267

of all input and output data used to generate SoilGrids exceeds 30 TiB, so that a first step in preparing SoilGrids250m 268

was to obtain a Synology 12-Bay NAS storage server with 60 TiB space. Handling such a large data set presented 269

major challenges considering computational complexity and network bandwidth limitations. To optimize computing 270

performance, especially spatial overlay, model fitting, predictions and export of predictions, we used exclusively 271

parallelized versions of functions. For prediction, parallelization is already implemented internally via the ranger or 272

xgboost software; for other processes we primarily used the snowfall package51. 273

All processing was implemented on a single dedicated high performance server with 256 GiB RAM, 8 TiB hard 274

disk space, 48 cores (Intel Xeon 2xE5-2690v3 24c/48t 2.6–3.5 GHz) and running on Ubuntu 15.10 (Willy Werewolf) 275

OS and R-cran 3.2.3 using ATLAS (Automatically Tuned Linear Algebra Software) 3.11.38 library. Even after 276

parallelization, producing predictions for all soil variables and all depths took 10+ days of continuous computing, i.e. 277

about 12 thousand CPU hours (about 90 % of the computing time is invested in generating predictions). Because the 278

current system is fully scalable, the next update of SoilGrids could be completed in shorter time frames, e.g. by 279

boosting the number of computer cores, although this might also greatly increase the production costs. 280
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The tiling system 281

For tiling, we used the Equi7 Grid system52 which splits the global land mass into seven separate planar grids 282

(Europe and Asia are split into two land masses with some small overlap). The Equi7 Grid system was selected for 283

several practical reasons52: 284

1. The projections of the Equi7 Grid are equidistant and hence suitable for various geographic analyses, especially 285

for derivation of buffer distances and for hydrological DEM modeling, i.e. to derive all DEM-based soil 286

covariates, 287

2. Areal and shape distortions stemming from the Equi7 Grid projection are relatively small, yielding a small 288

grid oversampling factor, 289

3. The Equi7 Grid systems ensures an efficient raster data storage while suppressing inaccuracies during spatial 290

transformation. Especially for high-resolution global data, these are important features. 291

The global soil mask at 250 m resolution contains about 1.6 billion pixels (Africa: 330 million, Europe: 292

110 million, North America: 230 million, South America: 210 million, Antartica: 0.05 million, Oceania: 140 million, 293

Asia: 360 million). We provide the final outputs in both the Equi7 Grid system and in geographical WGS84 294

coordinates. Final global mosaics in the WGS84 system were produced by reprojecting all pixels using GDAL warp 295

and translate functions43. The ground resolution of 250 m corresponds to a geographical resolution of 1/480 decimal 296

degrees. An image representing the whole world at this resolution comprises 172k columns and 72k rows. 297

Final predictions are available both as mosaics and as 1° tiles (16,360 tiles to represent the world land mask); 298

tiles are considered more suitable for users interested in regional and national data, and mosaics (at resolutions of 299

20 km, 1 km and 250 m) are deemed suitable for global modellers. 300

Accuracy assessment 301

For accuracy assessment of both numeric and categorical variables we used 10–fold repeated cross-validation. Each 302

model is re-fitted 10 times using 90 % of the data and predictions derived from the fitted models are compared 303

with observations of the remaining 10 %. For each of the 14 numeric soil properties we derived the coefficient of 304

determination (R2 – the amount of variation explained by the model), mean error (ME) and root mean squared error 305

(RMSE). The amount of variation explained by the model is derived as: 306

R2 =

[
1− SSE

SST

]
×100% (4)

where SSE is the sum of squared errors at cross-validation points and SST is the total sum of squares. A coefficient of 307

determination close to 1 indicates a perfect model, i.e. 100 % of variation has been explained by the model. Numeric 308

variables with skew distributions were log-transformed prior to modeling and hence for these variables we report the 309

amount of variation explained by the model after log-transformation. Also for the cross-validation correlation plots 310

(see Fig 8) we used either log or linear scale depending on whether log-transformation was applied. 311

For predictions of soil WRB and USDA classes we calculated the map purity (0–100 %) for the dominant soil 312

class at cross-validation points and weighted kappa metrics53 as implemented in the psych package. For the predicted 313

probabilities of soil class occurrences (0–1 probability values) we also derived the area under the receiver operating 314

characteristic curve (AUC) and the True Positive Rate (TPR) statistic as implemented in the ROCR package54, 55. 315

Values of TPR range from 0 to 1. Values of AUC close to 1 show high prediction performance, while values around 316

0.5 and below are considered poor. 317

For soil WRB and USDA classes we also generated global maps of the scaled Shannon Entropy Index using the 318

per-class probability maps56, 57: 319

Hs(x) =−
K

∑
k=1

pk(x) · logK(pk(x)) (5)
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where K is the number of possible classes, logK is the logarithm to base K and pk is probability of class k. The 320

scaled Shannon Entropy Index (Hs) is in the range from 0–1, where 0 indicates no ambiguity (one of the pk equals 321

one and all others are zero) and 1 indicates maximum confusion (all pk equal 1
K )58. Note that the scaled Shannon 322

Entropy Index should not be confused with classification accuracy assessment: Hs is an internal accuracy measure 323

derived from the model and not based on comparison of predictions with (cross-)validation data, such as the purity 324

and kappa metrics. For Shannon index of 0 at some location accuracy could still be completely wrong because the 325

soil class at that location could actually be a different one. 326

Results 327

Model fitting 328

Summary results of model fitting are given in Figs 6 and 7 and Tables 1 and 2. The ranger package reports model 329

fitting success via the R-square based on Out-of-bag (OOB) samples, i.e. the amount of variation explained by the 330

model, which ranged from a low of 0.59 for coarse fragments to a high of 0.85 for soil pH. R-square estimated using 331

xgboost (derived using repeated cross-validation) was lower, ranging from 0.37 for coarse fragments to 0.60 for soil 332

pH. On average, the two packages report R-square values between 0.4–0.8 with an overall average of 0.60. This 333

number corresponds closely to our results produced using 10–fold cross validation with repeated fitting. Comparing 334

these new results to average R-square values of 0.38 for the original SoilGrids1km predictions reveals a significant 335

improvement of close to +50 %. 336

The train function of the package caret usually picked a relatively high Mtry parameter (number of variables 337

randomly sampled as candidates at each split) as optimal for soil properties: the optimized values ranged from 338

18 for coarse fragments to 22 for all other soil properties. Higher Mtry is recommend for cases where the 339

number of covariates is large and multiple variables influence the target variables with equal importance59. For 340

the Gradient Boosting Tree method, train always selected the same combination of tuning parameters for all 341

soil properties: nrounds = 100, max_depth = 3, eta = 0.4, gamma = 0, colsample_bytree = 0.8 and 342

min_child_weight = 1. This may be because we limited the combinations of tuning parameters to 10 to speed 343

up processing speed. Higher values for xgboost tuning parameters are indicative of higher-level complexity of the 344

model: many relationships between soil properties and covariates are non-linear and a greater number of splits is 345

possibly required to represent this complexity. 346

Fig 6 shows the top 15 soil covariates for each target variable. This indicates that, for example, spatial pattern of 347

soil pH is primarily influenced by precipitation and surface reflectance (MODIS Medium-Infrared band 6 for months 348

April and May especially). Also, for most variables depth emerges as the most important covariate, especially 349

for soil organic carbon, bulk density and coarse fragments. For soil types and soil textures, DEM-parameters, i.e. 350

soil forming factors of relief, especially flow-based DEM-indices, emerge as second-most dominant covariates. 351

These results largely correspond with conventional soil survey knowledge (surveyors have been using relief as a key 352

guideline to delineate soil bodies for decades), but it is encouraging to have these findings confirmed with statistical 353

modeling of real data on a global scale. 354

Although lithology is not in the list of top 15 most important predictors, spatial patterns of lithologic classes 355

can often be distinctly recognized in the output predictions. This is especially true for soil texture fractions and 356

coarse fragments. In general, for predicting soil chemical properties, climatic variables (especially precipitation) 357

and surface reflectance seem to be the most important, while for soil classes and soil physical properties it is a 358

combination of relief, vegetation dynamics and parent material. 359

Fig 7 shows some individual relationships between target variables and several of the most important covariates. 360

For soil pH we observe that the relationship with total annual rainfall is close to linear; for soil organic carbon and 361

depth the relationship is linear on a log-log scale. Many such individual correlations can also be interpreted and 362

understood in terms of pedologic knowledge. For example, higher MIR reflectance may be associated with high 363

concentration of salts in soil and hence higher pH; higher rainfall and cooler climates often result in higher organic 364

carbon content because the speed of organic matter accumulation is higher than the speed of decomposition. For the 365

majority of soil variables, however, relationships are not clearly linear and often many soil covariates are equally 366
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Figure 6. Fitted variable importance plots for target variables. Generated as an average of predictions
using the ranger and xgboost packages (for soil types results are based on the ranger model only). DEPTH.f
is depth from soil surface, T**MOD3 and N**MOD3 are mean monthly temperatures daytime and nighttime
(red color), TWI, DEM, VBF and VDP are DEM-parameters (bisque color), M**MOD4 are mean monthly MODIS
NIR band reflectances (cyan color), P**MRG3 are mean monthly precipitation (blue color), E**MOD5 are
mean monthly EVI derivatives (dark green color), VW*MOD1 are monthly MODIS Precipitable Water Vapor
images (orange color), C**GLC5 are land cover classes (light green color), and ASSDAC3 is the average soil
and sedimentary-deposit thickness (brown color).

important. 367

We have also investigated possibilities for using kriging of residuals to improve predictions of soil properties. 368

Because the majority of spatial variation has been explained by covariates and machine learning models, it appears 369

that no significant spatial autocorrelation structure can be observed for residuals (i.e. almost all variograms show pure 370

nugget effect structure) at distances <300 km for almost all continents and all variables. Although locally, where the 371

point density is high, kriging of residuals could still be beneficial for mapping of CEC and depth to bedrock, overall 372

kriging of residuals for global land mass does not seem to be necessary nor is it practical to implement for billions of 373

pixels: it would only marginally improve the accuracy of predictions at high computing costs. 374

14/36



Figure 7. Examples of relationships for target variables (yhat) and most important covariates: (top row)
bulk density in kgm−3, (middle row) soil pH, and (bottom row) soil organic carbon. Plots show target
variables and the top three most important covariates as reported by the random forest model. DEPTH.f is
the observed depth from soil surface, T09MOD3 is mean monthly temperature for September, TMDMOD3 is
mean annual temperature, PRSMRG3 is total annual precipitation, M04MOD4 is mean monthly MODIS NIR
band reflectance for April, P07MRG3 is mean monthly precipitation for July, T01MOD3 is mean monthly
temperature for January, and T02MOD3 is mean monthly temperature for February. For the soil organic
carbon vs depth plot we used a log-log model for better visualization.

Accuracy assessment 375

Table 1 shows summary results of cross-validation for soil properties (global assessment). In all cases there is no 376

large overestimation of values, although for organic carbon and CEC the models seem to somewhat under-estimate 377

the overall mean. For log-transformed variables we applied the accuracy assessment in the log-transformed space 378

which yields asymmetric prediction intervals after back-tranformation. For example, predictions for organic carbon 379

are ±0.715 in log-space, which means that the 90 % probability prediction interval for a case where the soil organic 380

carbon prediction equals 20‰ (2 %) is 6–65‰; for a case where the soil organic carbon prediction equals 150‰ 381

it is 46–485‰. Prediction intervals are hence still fairly wide, which might make SoilGrids of limited usability 382

for detailed spatial modeling e.g. at farm level. Note also that because there is significant spatial clustering of the 383

training points, it is possible that the validation results might be somewhat more optimistic than if we had validated 384
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Table 1. SoilGrids average prediction error for key soil properties based on 10–fold cross-validation. N =
“Number of samples used for training”, ME = “Mean Error”, MAE = “Mean Absolute Error”, RMSE = “Root
Mean Squared Error” and R-square = “Coefficient of determination” (amount of variation explained by the
model). For variables with a skew distribution, such as organic carbon, coarse fragments and CEC, the
accuracy statistics are also provided on log-scale⊗.

Variable name N Min Max ME MAE RMSE R-square RMSE⊗ R-square⊗

Soil organic carbon
(gravimetric) 605,054 0 520 -0.292 10.2 32.8 63.5 % 0.715 68.8 %

pH index
(H2O solution) 604,019 2.1 11.0 -0.002 0.4 0.5 83.4 %

Sand content
(gravimetric) 616,762 1 % 94 % -0.037 9.0 13.1 78.6 %

Silt content
(gravimetric) 613,750 2 % 74 % 0.023 6.7 9.8 79.4 %

Clay content
(gravimetric) 625,159 2 % 68 % -0.102 6.6 9.5 72.6 %

Coarse fragments
(volumetric) 303,139 0 % 89 % -0.104 5.5 10.9 55.9 % 1.185 64.3 %

Bulk density
(fine earth fraction) 140,596 250 2870 -1.574 108.3 164.7 75.8 %

Cation-exchange capacity
(fine earth fraction) 393,585 0 234 -0.071 5.5 10.3 64.5 % 0.483 67.0 %

Depth to bedrock
(in cm) 1,580,798 0 125,000 -29 678 835 54.0 % 1.12 42.8 %

predictions by using points collected following some (objective) probability sampling, as described in Brus et al.60. 385

On the other hand, the cross-validation results do not show any serious systematic over- or underestimation (ME 386

close to zero), which is also visible from the correlation plots (Fig 8). 387

Table 2 shows results for SoilGrids250m in comparison with the previous system at 1 km resolution. Im- 388

provements in average RMSE are between 30–80 % and can probably be attributed to the use of machine learning 389

algorithms instead of multiple linear regression, but also to investments in preparing finer resolution covariates and 390

additional and improved soil profile data. 391

The most challenging variables to model with this set of covariates are coarse fragments and depth to bedrock, 392

although in no case is the R-square <50 %. Nevertheless, the RMSE is still relatively high in comparison to many 393

local soil mapping projects. Users should thus be aware that the uncertainty levels are still relatively high. There are 394

also still problems with overestimation of low values, clearly visible for example in the case of soil organic carbon 395

content. Overall, predictions for most properties are unbiased, i.e. most predictions are fairly symmetric around the 396

1:1 line (Fig 8). 397

For soil classes, out-of-bag average prediction accuracy, reported by the packages, was between 20–28 % for 398

the WRB classification system and between 34–48 % for the USDA system. The 10–fold cross-validation results 399

showed that the weighted kappa for WRB classes is 42 %, with map purity 28 %; for USDA classes the kappa 400

is 57 %, while the map purity is 48 %. Although WRB classes seem to be somewhat more challenging to model 401

than USDA suborders, this comparison should be considered within the context of: (a) the number of classes, 402

and (b) similarity between classes. The WRB classification contains about two times more classes than USDA 403

suborders, and many WRB classes with highest confusion fall in taxonomically similar groups. Further evaluation 404

of classification accuracy has shown that, at the level of WRB soil groups, map purity jumps to 60 %, i.e. it becomes 405

comparable to the USDA system. Remaining WRB soil groups with map purity <50 % are Planosols, Phaeozems 406
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Table 2. Mapping performance of SoilGrids250m compared to summary results for SoilGrids1km9.
Amount of variation explained by models (Eq 4), i.e. prediction accuracy for soil types was determined
using 10–fold cross-validation. GSIF = “Global Soil Information Facilities”.

Variable name Type Units GSIF code
Amount of var.

explained
(SoilGrids1km)

Amount of var.
explained (Soil-

Grids250m)

Relative
improvement

Soil organic carbon 3D gkg−1 ORCDRC 22.9 % 68.8 % 200 %

pH index
(H2O solution) 3D 10−1 PHIHOX 50.5 % 83.4 % 65 %

Sand content
(gravimetric) 3D kgkg−1 SNDPPT 23.5 % 78.6 % 234 %

Silt content
(gravimetric) 3D kgkg−1 SLTPPT 34.9 % 79.4 % 127 %

Clay content
(gravimetric) 3D kgkg−1 CLYPPT 24.4 % 72.6 % 198 %

Coarse fragments
(volumetric) 3D cm3 cm−3 CRFVOL - 64.3 % -

Bulk density
(fine earth fraction) 3D kgm−3 BLD 31.8 % 75.8 % 138 %

Cation-exchange capacity
(fine earth fraction) 3D cmol+/kg CEC 29.4 % 67.0 % 128 %

Depth to bedrock 2D cm BDT - 42.8 % -

and Ferrasols. 407

Table 3. Classification accuracy for predicted USDA class probabilities based on 10–fold cross-validation,
ordered according to number of occurrences. ME = “Mean Error”, TPR = “True Positive Rate”, AUC =

“Area Under Curve”, N = “Number of occurrences”, USDA = “United States Department of Agriculture” soil
classification system. The 1st and 2nd most probable classes are taken from the confusion matrix.

Name ME (%) TPR AUC N 1st class 2nd class

Udalfs 0.0 0.88 0.93 6326 Udalfs Udults
Udults 0.0 0.91 0.95 4997 Udults Udalfs
Udolls 0.1 0.91 0.93 3901 Udolls Udalfs
Ochrepts 0.1 0.89 0.91 2720 Ochrepts Udalfs
Aqualfs 0.0 0.89 0.91 2594 Aqualfs Udalfs
Aquolls 0.1 0.89 0.90 2450 Udolls Aquolls
Udox 0.0 0.93 0.95 2229 Ustox Udox
Ustolls -0.2 0.95 0.97 2042 Ustolls Borolls
Borolls 0.1 0.97 0.98 2029 Borolls Albolls
Ustox 0.1 0.93 0.95 2024 Ustox Udox
Orthents 0.1 0.88 0.89 1911 Orthents Udults
Aquepts 0.0 0.87 0.88 1734 Aquolls Aquepts
Psamments 0.1 0.90 0.92 1725 Psamments Udults
Fluvents 0.1 0.84 0.85 1579 Udults Udalfs
Orthods 0.1 0.97 0.98 1538 Orthods Ochrepts
Udepts 0.1 0.90 0.91 1429 Udepts Udults
Aquents -0.1 0.84 0.85 1342 Aquepts Udalfs
Ustalfs -0.1 0.95 0.96 1332 Ustalfs Ustolls
Xerolls 0.0 0.97 0.98 1319 Xerolls Xeralfs

Continued on next page
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Table 3 – Continued from previous page

Name ME (%) TPR AUC N 1st class 2nd class

Argids -0.1 0.98 0.99 907 Argids Xerolls
Turbels 0.1 0.99 1.00 787 Turbels Orthels
Orthels 0.0 0.97 0.98 648 Ochrepts Orthels
Xeralfs -0.3 0.97 0.98 615 Xeralfs Xerolls
Usterts -0.2 0.97 0.98 590 Usterts Ustolls
Albolls -0.2 0.92 0.93 589 Borolls Aquolls
Xerepts -0.3 0.99 0.99 588 Xerepts Xeralfs
Arents -0.2 0.99 0.99 554 Arents Ustox
Aquults -0.2 0.94 0.94 380 Udults Aquults
Cambids -0.1 0.99 0.99 362 Cambids Argids
Humults -0.1 0.98 0.98 348 Humults Udults
Hemists -0.2 0.93 0.93 347 Ochrepts Hemists
Torrox -0.3 0.98 0.99 334 Ustox Torrox
Saprists -0.4 0.93 0.93 319 Saprists Udalfs
Histels -0.3 0.99 0.99 302 Histels Turbels
Aquods 0.0 0.94 0.94 301 Orthods Udults
Calcids -0.1 0.98 0.99 301 Argids Calcids
Ustults 0.0 0.99 0.99 286 Ustults Ustalfs
Fibrists 0.0 0.96 0.97 250 Fibrists Udults
Udands 0.0 0.99 0.99 234 Udands Udox
Xerands 0.0 0.99 0.99 231 Xerands Xerolls
Aquerts -0.2 0.95 0.95 226 Aqualfs Udalfs
Xererts 0.0 0.96 0.96 184 Xererts Xerolls
Uderts 0.0 0.95 0.96 177 Udults Uderts
Ustepts 0.0 0.97 0.97 175 Ustolls Ustepts
Cryands 0.0 0.99 0.99 161 Cryands Ochrepts
Cryepts 0.0 0.98 0.98 150 Ochrepts Cryepts
Humods 0.0 0.92 0.92 149 Orthents Orthods
Cryods -0.1 0.99 1.00 133 Orthods Cryods
Torrerts -0.1 0.98 0.98 106 Ustolls Torrerts
Cryolls -0.2 0.99 0.99 79 Borolls Cryolls
Gelods -0.7 1.00 1.00 78 Turbels Gelods
Gypsids -0.1 0.99 0.99 70 Argids Gypsids
Vitrands -0.3 0.98 0.98 62 Vitrands Ochrepts
Torrands -0.3 0.99 0.99 60 Xerolls Torrands
Durids -0.3 0.99 0.99 59 Argids Xerolls
Xerults -0.3 0.97 0.97 53 Xeralfs Humults
Rendolls -0.5 0.93 0.93 41 Udalfs Ochrepts
Salids -0.6 0.94 0.94 37 Argids Fluvents
Cryalfs -0.7 1.00 1.00 32 Ochrepts Borolls
Folists -0.5 0.99 0.99 30 Orthods Cryods
Gelands -1.0 0.97 0.97 26 Gelods Turbels
Perox -0.7 0.99 0.99 21 Udults Perox
Aquands -0.7 0.98 0.98 19 Xerolls Udands
Ustands -0.9 1.00 1.00 17 Ustalfs Orthents
Aquox -1.0 0.98 0.98 16 Udults Udox
Cryids 0.99 0.99 8 Argids Borolls
Gelepts 0.83 0.83 6 Ochrepts Turbels

408

18/36



Figure 8. Correlation (density) plots produced as a result of 10–fold cross-validation. See also Table 1 for
more details.

Table 4. Classification accuracy for predicted WRB class probabilities based on 10–fold cross-validation,
ordered according to number of occurrences. ME = “Mean Error”, TPR = “True Positive Rate”, AUC =

“Area Under Curve”, N = “Number of occurrences”, WRB = “World Reference Base” soil classification
system. The 1st and 2nd most probable classes are taken from the confusion matrix.

Name ME (%) TPR AUC N 1st class 2nd class

Haplic Cambisols 0.1 0.78 0.81 5619 Haplic Cambisols Haplic Cambisols (Dystric)
Haplic Luvisols 0.1 0.86 0.88 2975 Haplic Luvisols Haplic Cambisols
Haplic Acrisols 0.0 0.93 0.94 2607 Haplic Acrisols Haplic Ferralsols
Haplic Ferralsols -0.1 0.94 0.95 1887 Haplic Ferralsols Haplic Acrisols

Continued on next page
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Table 4 – Continued from previous page

Name ME (%) TPR AUC N 1st class 2nd class

Haplic Fluvisols -0.1 0.88 0.89 1776 Haplic Fluvisols (Calcaric) Haplic Fluvisols (Eutric)
Haplic Calcisols 0.0 0.93 0.94 1745 Haplic Calcisols Calcaric Regosols
Haplic Kastanozems 0.0 0.96 0.97 1718 Haplic Kastanozems Haplic Luvisols
Gleyic Luvisols 0.0 0.92 0.93 1686 Albic Luvisols Gleyic Luvisols
Aric Regosols -0.2 0.91 0.92 1488 Calcaric Regosols Haplic Leptosols
Haplic Chernozems 0.1 0.96 0.97 1394 Haplic Chernozems Haplic Kastanozems
Albic Luvisols -0.1 0.94 0.95 1389 Gleyic Luvisols Haplic Luvisols
Calcaric Regosols -0.2 0.92 0.93 1379 Aric Regosols Haplic Leptosols
Haplic Podzols 0.1 0.96 0.97 1359 Haplic Podzols Haplic Cambisols
Haplic Cambisols (Dystric) 0.0 0.90 0.91 1334 Haplic Cambisols Haplic Podzols
Haplic Cambisols (Calcaric) -0.1 0.92 0.92 1173 Haplic Cambisols Haplic Calcisols
Haplic Phaeozems -0.1 0.90 0.91 1114 Haplic Phaeozems Haplic Chernozems
Haplic Lixisols 0.0 0.92 0.93 1094 Haplic Lixisols (Chromic) Haplic Lixisols
Haplic Leptosols 0.0 0.91 0.92 1092 Haplic Leptosols Haplic Leptosols (Eutric)
Haplic Gleysols 0.0 0.88 0.89 1054 Haplic Gleysols (Eutric) Haplic Cambisols
Haplic Vertisols 0.1 0.93 0.93 1040 Haplic Vertisols (Eutric) Haplic Vertisols
Haplic Arenosols 0.1 0.91 0.92 935 Haplic Arenosols Haplic Cambisols
Ferralic Arenosols 0.1 0.96 0.97 920 Ferralic Arenosols Haplic Ferralsols
Haplic Cryosols 0.0 0.99 1.00 884 Haplic Cryosols Haplic Cambisols
Haplic Cambisols (Eutric) 0.1 0.84 0.85 857 Haplic Cambisols Haplic Luvisols
Haplic Alisols 0.1 0.94 0.95 827 Haplic Acrisols Haplic Cambisols
Luvic Phaeozems -0.4 0.90 0.91 741 Luvic Phaeozems Haplic Luvisols
Rendzic Leptosols 0.0 0.94 0.95 695 Haplic Cambisols Rendzic Leptosols
Haplic Fluvisols (Calcaric) 0.0 0.94 0.94 692 Haplic Fluvisols Haplic Calcisols
Petric Calcisols 0.1 0.97 0.98 679 Petric Calcisols Haplic Calcisols
Haplic Regosols (Eutric) 0.1 0.86 0.87 677 Haplic Cambisols Haplic Luvisols
Lithic Leptosols 0.0 0.93 0.93 655 Haplic Ferralsols Haplic Acrisols
Umbric Gleysols 0.0 0.91 0.92 621 Mollic Gleysols Calcic Gleysols
Mollic Gleysols 0.0 0.91 0.91 575 Umbric Gleysols Calcic Gleysols
Haplic Vertisols (Eutric) 0.1 0.95 0.95 568 Haplic Vertisols Haplic Kastanozems
Haplic Gypsisols 0.1 0.98 0.98 565 Haplic Gypsisols Aric Regosols
Haplic Solonetz 0.1 0.92 0.92 539 Gleyic Solonetz Solodic Planosols
Calcic Gleysols 0.0 0.90 0.91 514 Umbric Gleysols Mollic Gleysols
Haplic Nitisols (Rhodic) 0.1 0.94 0.95 492 Haplic Ferralsols Haplic Acrisols
Haplic Fluvisols (Eutric) 0.1 0.91 0.91 465 Haplic Fluvisols Haplic Ferralsols
Haplic Lixisols (Chromic) 0.0 0.97 0.97 441 Haplic Lixisols Haplic Ferralsols
Calcic Vertisols -0.1 0.93 0.93 437 Calcic Vertisols Haplic Vertisols
Calcic Kastanozems -0.1 0.95 0.95 415 Haplic Kastanozems Haplic Luvisols
Leptic Regosols 0.1 0.96 0.96 404 Petric Calcisols Haplic Luvisols
Haplic Luvisols (Chromic) -0.1 0.93 0.93 396 Haplic Luvisols Haplic Ferralsols
Haplic Solonchaks 0.1 0.95 0.95 383 Haplic Solonchaks (Sodic) Haplic Solonchaks
Luvic Chernozems -0.1 0.93 0.93 377 Haplic Kastanozems Luvic Phaeozems
Acric Ferralsols 0.0 0.97 0.98 371 Haplic Ferralsols Acric Ferralsols
Fibric Histosols 0.0 0.96 0.96 371 Fibric Histosols Haplic Acrisols
Calcic Luvisols 0.0 0.92 0.92 369 Haplic Cambisols Haplic Luvisols
Calcic Chernozems 0.0 0.94 0.94 358 Calcic Chernozems Haplic Cambisols
Aluandic Andosols 0.0 0.97 0.97 341 Aluandic Andosols Haplic Cambisols
Luvic Calcisols 0.0 0.95 0.95 322 Haplic Calcisols Haplic Kastanozems
Protic Arenosols 0.0 0.99 0.99 322 Protic Arenosols Haplic Leptosols
Haplic Albeluvisols -0.1 0.97 0.97 321 Haplic Albeluvisols Haplic Cambisols
Mollic Solonetz -0.1 0.94 0.94 312 Gleyic Solonetz Haplic Kastanozems
Haplic Acrisols (Ferric) -0.1 0.95 0.95 310 Haplic Acrisols Haplic Cambisols
Haplic Planosols (Eutric) 0.0 0.89 0.89 310 Haplic Podzols Haplic Acrisols
Haplic Gleysols (Eutric) -0.1 0.93 0.93 306 Haplic Gleysols Haplic Acrisols
Ferralic Cambisols 0.0 0.93 0.93 301 Haplic Ferralsols Haplic Acrisols
Cryic Histosols -0.1 0.99 0.99 299 Cryic Histosols Haplic Cryosols
Gleyic Solonetz -0.2 0.94 0.94 282 Mollic Solonetz Haplic Solonetz

Continued on next page
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Table 4 – Continued from previous page

Name ME (%) TPR AUC N 1st class 2nd class

Haplic Cambisols (Humic) 0.0 0.92 0.93 273 Haplic Cambisols Haplic Acrisols
Leptic Phaeozems 0.1 0.97 0.97 267 Leptic Phaeozems Haplic Luvisols
Haplic Regosols (Dystric) 0.0 0.87 0.87 262 Haplic Cambisols Haplic Acrisols
Haplic Leptosols (Eutric) 0.0 0.93 0.93 261 Haplic Leptosols Haplic Calcisols
Acric Plinthosols 0.1 0.97 0.97 251 Haplic Acrisols Haplic Ferralsols
Hemic Histosols 0.0 0.97 0.97 250 Hemic Histosols Albic Luvisols
Endogleyic Cambisols 0.0 0.87 0.87 249 Haplic Cambisols Haplic Acrisols
Haplic Cambisols (Chromic) 0.0 0.93 0.93 242 Haplic Cambisols Haplic Ferralsols
Vertic Cambisols 0.1 0.88 0.88 241 Haplic Ferralsols Haplic Cambisols
Leptic Luvisols 0.2 0.96 0.97 229 Haplic Luvisols Leptic Phaeozems
Solodic Planosols 0.0 0.96 0.96 222 Haplic Solonetz Haplic Kastanozems
Hypoluvic Arenosols 0.0 0.96 0.96 205 Hypoluvic Arenosols Haplic Arenosols
Leptic Cambisols 0.1 0.94 0.94 199 Haplic Luvisols Petric Calcisols
Umbric Ferralsols 0.1 0.96 0.96 192 Haplic Ferralsols Haplic Acrisols
Gleyic Podzols 0.1 0.95 0.95 176 Gleyic Podzols Haplic Acrisols
Turbic Cryosols 0.0 0.99 1.00 168 Haplic Cryosols Turbic Cryosols
Vitric Andosols 0.1 0.97 0.97 166 Haplic Cambisols Aluandic Andosols
Haplic Acrisols (Humic) 0.0 0.96 0.96 164 Haplic Acrisols Haplic Cambisols
Haplic Fluvisols (Arenic) 0.0 0.98 0.98 163 Haplic Fluvisols Ferralic Arenosols
Stagnic Luvisols 0.0 0.93 0.93 163 Haplic Cambisols Haplic Luvisols
Mollic Leptosols 0.0 0.90 0.90 162 Petric Calcisols Haplic Leptosols
Haplic Acrisols (Alumic) 0.0 0.98 0.98 156 Haplic Acrisols Haplic Ferralsols
Plinthic Acrisols 0.0 0.94 0.94 152 Haplic Acrisols Plinthic Acrisols
Calcic Solonetz 0.0 0.93 0.93 149 Haplic Calcisols Haplic Kastanozems
Haplic Ferralsols (Xanthic) 0.0 0.96 0.96 146 Haplic Ferralsols Haplic Acrisols
Vertic Luvisols -0.1 0.93 0.94 140 Haplic Cambisols Haplic Luvisols
Haplic Lixisols (Ferric) -0.1 0.96 0.96 134 Haplic Lixisols Haplic Acrisols
Mollic Vertisols 0.0 0.96 0.96 133 Mollic Vertisols Haplic Cambisols
Haplic Solonchaks (Sodic) -0.1 0.97 0.97 130 Haplic Solonchaks Haplic Arenosols
Sapric Histosols -0.1 0.90 0.90 128 Haplic Cambisols Fibric Histosols
Haplic Ferralsols (Rhodic) -0.1 0.96 0.96 125 Haplic Ferralsols Haplic Acrisols
Calcic Gypsisols -0.4 0.96 0.96 124 Calcaric Regosols Haplic Calcisols
Haplic Cambisols (Sodic) -0.1 0.98 0.98 120 Haplic Cambisols Ferralic Arenosols
Haplic Calcisols (Sodic) -0.4 0.98 0.98 115 Haplic Calcisols Haplic Cambisols
Haplic Fluvisols (Dystric) -0.2 0.93 0.93 107 Haplic Fluvisols Haplic Ferralsols
Haplic Gleysols (Dystric) -0.3 0.91 0.91 100 Haplic Gleysols Haplic Ferralsols
Gypsic Solonchaks -0.4 0.98 0.98 98 Haplic Gypsisols Calcaric Regosols
Haplic Luvisols (Ferric) -0.2 0.95 0.95 98 Haplic Luvisols Haplic Lixisols
Haplic Arenosols (Calcaric) -0.3 0.94 0.94 97 Haplic Arenosols Haplic Calcisols
Umbric Albeluvisols -0.2 0.99 1.00 97 Umbric Albeluvisols Haplic Albeluvisols
Alic Nitisols -0.1 0.98 0.98 70 Haplic Acrisols Alic Nitisols
Haplic Andosols -0.2 0.93 0.93 67 Aluandic Andosols Haplic Luvisols
Haplic Planosols (Dystric) 0.0 0.92 0.92 62 Ferralic Arenosols Haplic Ferralsols
Luvic Stagnosols 0.0 0.99 0.99 61 Haplic Cambisols Gleyic Luvisols
Haplic Umbrisols 0.0 0.93 0.93 57 Haplic Cambisols Haplic Acrisols
Albic Arenosols -0.1 0.93 0.93 54 Haplic Acrisols Haplic Arenosols
Lixic Plinthosols -0.2 0.94 0.94 49 Haplic Ferralsols Haplic Acrisols
Leptic Umbrisols -0.4 0.97 0.97 40 Haplic Luvisols Haplic Leptosols
Petric Durisols -0.3 1.00 1.00 39 Petric Durisols Haplic Phaeozems
Cutanic Alisols -0.4 0.98 0.98 34 Haplic Cambisols Cutanic Alisols
Endogleyic Planosols -0.2 0.93 0.93 34 Haplic Acrisols Haplic Luvisols
Haplic Regosols (Sodic) -0.5 0.97 0.97 34 Haplic Vertisols Leptic Regosols
Luvic Planosols -0.4 0.88 0.88 29 Haplic Luvisols Haplic Cambisols
Calcic Histosols -0.9 0.94 0.94 18 Haplic Acrisols Haplic Gleysols
Vetic Acrisols -1.6 0.90 0.90 15 Haplic Acrisols Haplic Ferralsols
Histic Albeluvisols -2.3 1.00 1.00 13 Umbric Albeluvisols Fibric Histosols

Continued on next page
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Table 4 – Continued from previous page

Name ME (%) TPR AUC N 1st class 2nd class

Vitric Cryosols -2.3 1.00 1.00 13 Vitric Cryosols Haplic Cambisols

409

Figure 9. Maps of scaled Shannon Entropy index (Eq.5) for USDA and WRB soil classification maps.

A more detailed assessment of prediction accuracy derived using the ROCR package, i.e. per each individual 410

class, shows that the average TPR is about 0.93 for USDA soil suborders (Table 3), and about 0.90 for WRB classes 411

(Table 4). Also maps of the scaled Shannon Entropy index (Fig 9) indicate that produced soil class maps for USDA 412

soil classification system are less uncertain than for the WRB system: WRB classification is critically uncertain for 413

Australia and India, parts of Africa and highlands of Latin America. Maps of uncertainty closely reflect extrapolation 414

areas and could be potentially very useful for planning new soil surveys aimed at mapping soil types. For example, 415
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Figure 10. Example of scaled Shannon Entropy index for USDA and WRB soil classification maps with a
zoom in on USA state Illinois near the city of Chicago. This figure uses the same legend as used in Fig 9.

Fig 10 shows that the highest confusion (lowest prediction accuracy) is systematically connected with distribution of 416

river valleys, urban areas and hill-slopes. 417

In summary, the cross-validation results for predicting class probabilities indicate relatively high correspondence 418

between prediction probabilities and observed soil types, which is also confirmed visually by overlaying observed 419

classes and prediction probabilities. Nevertheless, it appears from Table 3 and 4 that for some classes, such as 420

Cambisols, Luvisols, Fluvisols and Planosols in the WRB system, and Aquepts, Fluvents and Aquents in the USDA 421

Soil Taxomony system, the confusion of predictions with other classes is still relatively high. 422

Discussion 423

In the following sections we address some remaining discussion points and suggest ways to improve SoilGrids 424

and embark on new research directions. Although we have reached current effective limits imposed by software 425

capabilities and availability of remote sensing data sources, the accuracy of SoilGrids could still be improved. 426

Globally, by adding more covariates based on the most recent remote sensing data (see Fig 11), and locally, by 427

combining global predictions with local prediction models (see Fig 13). Global models could be further improved 428

especially by revising (even re-designing) each of the three main components of the system: 429

• Soil training data, 430
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• Statistical / Machine Learning models, and 431

• Covariate layers. 432

Increasing and improving the quality and quantity of the training data 433

The most fruitful avenue for improving the current predictions is likely in improving the quality and quantity of soil 434

profile data. ISRIC has invested decades in obtaining, digitizing, cleaning up and standardizing soil profile data. A 435

large portion of these data (about 80,000 unique points) is publicly available via ISRIC’s Web Feature Service WoSIS 436

(http://wfs.isric.org/geoserver/wosis/wfs)61; remaining soil profile data sets not publicly available via 437

ISRIC’s WoSIS WFS can be obtained by contacting the corresponding original data providers as listed in the 438

Acknowledgment section. This collection of soil profile data is of similar scope and utility when compared to 439

other international data initiatives in meteorology (e.g. Global Historical Climatology Network) and biodiversity 440

(http://gbif.org). 441

Although the training data shown in Fig 3 appear to be quite dense, there are still large gaps in terms of 442

representation of the feature space. Tropics, wetlands, semi-arid to hyper-arid areas and mountains are still 443

largely under-represented. There are undoubtedly millions of soil field observations in the world unused for global 444

soil mapping activities that could be collated and used to improve predictions. FAO’s Global Soil Partnership 445

(http://www.fao.org/globalsoilpartnership/) has set as one of its main objectives the preparation of an 446

international compilation of reference soil profiles to help catalyze using soil data for decision making. Hence, there 447

are already some initiatives in this direction. 448

Harmonization of soil laboratory data and soil descriptive variables is another area that will need to be improved. 449

For example, we had to standardize soil depths for several databases by re-aligning 0 depth to soil surface. Some 450

soil databases only contain information about the mineral soil and put the zero level at the start of the mineral soil. 451

But such soils might have an organic layer as well. Since the thickness of the organic horizon of these soil profiles is 452

not reported, their vertical coordinates could not be corrected. There are many situations like this that require careful 453

analysis of harmonization steps, so that any serious over or under-estimation can be avoided. 454

It is also fundamentally important that we do not limit ourselves to legacy soil profile data only. The soil science 455

community needs to actively begin investing in collecting new soil profile field observations, especially in the 456

previously mentioned ecological and climatic zones that have been under-sampled. For example, the AfSIS project 457

(http://africasoils.net) has spent already half a decade on collecting new samples for Africa. We believe that 458

there is great potential in undertaking various types of feature space distribution analysis (see e.g. Minasny et al.62
459

and Fitzpatrick et al.63) and optimizing new sampling of additional soil profiles using, for example, Latin Hypercube 460

sampling principles. By adding only a few hundred new points that are carefully allocated in extrapolation areas, the 461

accuracy of predictions is likely to improve more rapidly than if we double the number of points in areas already 462

well represented. Collection of the new samples could even be implemented via crowd labour or crowdsourcing 463

systems so that also local soil surveyors / enthusiasts could get involved (we are currently testing using MySoil 464

observations contributed by non-specialists, kindly donated to SoilGrids by the British Geological Survey). 465

Improving the modeling framework 466

A major improvement from SoilGrids1km to SoilGrids250m is that we now consistently use machine learning 467

techniques to generate predictions. In the previous version of SoilGrids we used various types of (Generalized) 468

Linear Models in combination with natural splines to model soil property-depth relationships, but this resulted in 469

soil property-depth relationships that were the same across the globe, which is unrealistic and suboptimal. To tackle 470

such problems we now use dominantly tree-based models — random forest and gradient tree boosting — to account 471

for local relationships between soil variables and covariates. Fig 2 (left) shows that, indeed, predictions produced 472

using tree-based models adjust locally to observed values. The current version of SoilGrids is thus, we contend, able 473

to better represent both global and local patterns. 474

It has already been demonstrated that random forest can outperform linear models, especially in being able to 475

better represent complex non-linear relationships in large data sets64–66. Likewise, gradient tree boosting has already 476

won several Kaggle.com competitions (Kaggle is a platform for predictive modeling and analytics competitions on 477
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which companies and researchers post their data and statisticians and data miners from all over the world compete to 478

produce the best models). However, tackling the complexities of data size has been a major challenge. In the case 479

of SoilGrids, the regression matrices had up to one million point pairs with over 150 covariates, hence their size 480

and complexity well exceeds what can be handled with desktop computers. Ultimately, we decided to primarily 481

rely on three R packages — caret49, ranger47 and xgboost48 — that have proven to be capable of processing huge 482

raster stacks. By using these three open source packages and a single dedicated server (current costs of about $800 / 483

month) we were able to optimize and fit all models needed to generate SoilGrids within a few hours, and to generate 484

all predictions for the entire world within 12 days. 485

Machine learning (ML) greatly simplifies model fitting: basically, a soil surveyor does not need to suggest or 486

impose any relationships — the analyst only needs to list a target variable and covariates, and machine learning 487

does the ‘magic’ of optimizing model parameters. On the one hand this is an attractive property because using the 488

ML framework for global soil mapping allows mapping hundreds of soil variables in parallel with little human 489

interaction. On the other hand it has also risks and limitations: 490

• ML is sensitive to noise and errors in the data. Even a few typos in the input values can result in significant 491

blunders in output maps, 492

• The computational intensity of ML, when compared to fitting linear models or similar, is an order of magnitude 493

greater. As the number of training points grows, the computational load grows exponentially. At some stage, 494

it becomes currently infeasible and overly expensive to compute predictions using machine learning, 495

• Extrapolation of models fitted using ML remains risky. Without using pseudo-points to fill-in data gaps in 496

feature space for some parameters, machine learning can potentially produce worse maps (on average for most 497

of the soil mask) than linear models, 498

• Because the sampling locations are clearly biased towards agricultural areas, and because most of the training 499

points come from the developed world (especially USA), it is very well possible that SoilGrids predictions are 500

significantly biased in undersampled parts of the world. In principle, the best solution to this problem is to 501

continuously add more points from undersampled areas, especially in Africa (tropical soils and wetlands) and 502

the Russian Federation, 503

• With ML approaches it is difficult to derive spatially explicit measures of the prediction accuracy. We 504

calculated accuracy measures using 10–fold cross-validation, but these are only global measures. 505

• ML approaches have a high degree of ”black box” modeling and it is difficult to incorporate knowledge of 506

soil forming processes in the prediction algorithm. But perhaps we can also learn from ML models by closer 507

inspection and interpretation of how dominant covariates influence soil property and soil class predictions. 508

Could machine learning put soil mappers out of work? Probably not. Solid knowledge of soil science, spatial 509

statistics and/or geostatistics in projects such as SoilGrids is needed more than ever. For example, it is clear that in 510

order to improve SoilGrids, more focus will need to be put on improving the feature space representation (adding 511

extra samples) and on improving visualization and interpretation of complex relationships. Such improvements 512

are not possible without understanding principles of spatial sampling and soil-environment relationships. Expert 513

knowledge on soil-landscape relations and soil distribution remains important to evaluate the results and assess if 514

predicted spatial patterns make sense from a pedological viewpoint. Even though the existing machine learning 515

methods have proven to show improved predictive performance, much work remains to make them more robust, less 516

sensitive to blunders, incorporate soil-landscape process knowledge and make them more suited for input data of 517

variable accuracy. 518

With the current version of SoilGrids, we have also not yet adequately addressed the problem of vertical soil 519

stratigraphy. At this stage, we remain unable to properly model how some soil horizons show smooth transition of 520

soil properties, and some show clear and abrupt discontinuities (as in geological layers on a meso-scale). In the 521
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next update of SoilGrids we hope to improve modeling and prediction of occurrence of diagnostic soil horizons (e.g. 522

Histic, Nitic, Albic etc) in 3D, so that transitions between horizons can be represented more accurately. 523

Preparation and conversion of soil class input data could also be much improved. Several research groups67, 68
524

are now looking into automating soil classification (i.e. by using automated or semi-automated soil classification 525

software). Eberhardt69, for example, demonstrated using German soil profile data that soil classification can be 526

completely automatized. Future versions of SoilGrids could also try to derive soil classes by applying exact rules per 527

pixel, instead of trying to predict them from point data. This might be an ambitious project — often the classification 528

systems (keys and rules of classification) can be very detailed and require a comprehensive combination of diagnostic 529

properties, laboratory data, soil-moisture and temperature regimes, etc. in order to deduce the correct classification. 530

This is without considering the sensitivity of such classifiers to data gaps and uncertainties. Incorporating uncertainty 531

into such complex soil classification algorithms is yet another challenge. So far, we have managed to produce global 532

maps of the scaled Shannon Entropy index (Fig 9) that clearly indicate under-represented areas. A sensible approach 533

to improving predictions of soil types would be to set the sampling intensity proportional to the Shannon Entropy 534

index or completely focus on areas where the Shannon Entropy index is >80 %. In that sense, there seems to be 535

slightly more work needed for the WRB classification system than for the USDA system. 536

We have also so far explicitly avoided trying to model posterior distributions of target variables, i.e. map 537

uncertainty for each soil variable. Although tools for modeling uncertainty in ML methods already exist (see 538

e.g. Meinshausen70), these are hundreds of times more computationally intensive and will probably need to be re- 539

implemented in some high-performance computing infrastructure. One future objective is to implement a framework 540

to model uncertainties of all predictions using a robust statistical framework, such as quantile regression forests, but 541

this might be highly challenging, especially when the data volumes grow larger. 542

Another opportunity for improvement lies in using spatiotemporal modeling71, 72 vs purely spatial modeling. 543

Stockmann et al.2 recently made progress in modeling global soil organic carbon dynamics, mainly using time-series 544

of MODIS land cover images, but numerous challenges remain: 545

• There might not be enough well-distributed soil profile data in the time-domain that support fitting of 546

spatiotemporal (and/or dynamic) models. As we move back further in the past, there are fewer and fewer 547

observations, so potential time-domain gaps are possibly an order of magnitude more serious than spatial data 548

gaps, 549

• Some soil properties such as soil water content, soil temperature, and even soil nutrients, change not simply 550

within seasons, but also within weeks or days. At this stage, global fitting of spatiotemporal models for such 551

variables that vary at short time scales might remain unattainable (until new global soil monitoring networks 552

are established), 553

• Legacy soil profile data exhibit a significant noise (diversity of methods, laboratories) so that, for example for 554

soil organic carbon, where temporal dynamics are slow, it will be difficult to detect real changes in time in a 555

situation where the signal-to-noise ratio is low, 556

• It is almost impossible to properly validate spatiotemporal predictions produced for past periods of time. 557

There are very few and sparse validation soil data collected using objective probability sampling designs (as 558

described in Brus et al.60). Eventually, we might never know how accurate our models are in predicting the 559

past status of soil from 50 or 100 years ago. One possible solution to this problem is linking soil science more 560

directly with paleontology and archeology, but this will probably not work for all soil variables. 561

Predicting at resolutions finer than 250 meter 562

Because the algorithms and software we have used in this work are already optimized for processing large data, 563

this opens a possibility to further speed up model fitting and prediction and to generate predictions at ever finer 564

resolutions. Fig 11 identifies some new remote sensing data land products of relevance to global soil mapping. 565

Note that some remote sensing products, such as Landsat 8 and ASTER (distributed as scenes), require significant 566
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processing capacities before they can be assembled and prepared for use in global soil mapping. Nevertheless, 567

considering the amount of remote sensing data available publicly today, we anticipate that the Open Source software 568

used in this work will soon (12–24 months) be able to support generation of 30 m resolution SoilGrids, provided that 569

enough resources exist to cover the costs of preparing soil covariates and producing global predictions at these fine 570

resolutions. 571
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Figure 11. List of some remote sensing data of relevance for global soil mapping projects (i.e. with a near
to global coverage and with remote sensing technology of interest to soil mapping). Landsat 8 is part of the
Landsat Data Continuity Mission (LDCM) maintained by NASA and the United States Geological Survey
(USGS). ALOS Global Digital Surface Model is a product of the Japanese Aerospace Exploration Agency.
Sentinel–1,2 is the Earth observation mission developed by the European Space Agency as part of the
Copernicus Programme. WorldDEM™ is a commercial product distributed by Airbus Defence and Space.

Presently, the biggest challenges for upgrading SoilGrids to finer resolution are the resources required to prepare 572

all required remote sensing input data and computational capacity needed to make fine resolution predictions globally. 573

The software seems to be much less of a problem. Although R has been often criticized for not being suited for 574

large GIS layers, our experience with SoilGrids has convinced us that, with proper combination of parallelization 575

and tiling of objects, and by using packages implemented in C++ or similar, equally efficient computing can be 576

achieved with ranger and xgboost (hence within R) or by using software such as h2o (based on Java). The remaining 577

bottleneck of R we experienced was the size of models produced using random forest — the objects often exceeded 578

5–10 GiB and as such require significant RAM during predictions. Such memory problems in R could possibly be 579

solved via the following two strategies: 580

1. Disk caching: by using the ff or a similar packages to save the forests on disk, 581

2. Efficient tree representation: transform trees to a simpler structure with the same output. 582

In the case of random forest, the number of trees required for a given accuracy depends on the number of rows 583

and columns, i.e. the number of observations (n) and covariates (p). Usually, for many rows only few trees are 584
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required, while for p � n problems (for example in genetics) many more trees are needed. It should be generally fine 585

to reduce the number of trees to fewer than 300 but this could be at the expense of loss in accuracy. Lopes73 shows a 586

framework, based on bootstrapping, to detect an optimal number of trees given some error threshold. For example, 587

in many cases, even 150 trees is sufficient to achieve stable results after which a trade-off between computation time 588

and accuracy offers no additional advantages. We have not tried fine-tuning the number of trees per property (we 589

consistently use 300 trees as a practical compromise between precision and computing time) because this would 590

have been an additional load to the project. 591

Another serious challenge to producing finer resolution SoilGrids is the current lack of adequately detailed 592

geological data, i.e. data to represent the underlying lithology and mineralogy. We have thus far used the Global 593

Lithological Map (GLiM)35 as the key layer to represent parent material, but this layer is probably even coarser 594

than 1 km resolution remote sensing covariates, and still contains numerous artifacts such as country/state borders. 595

Although the OneGeology initiative is of obvious interest to global soil mapping projects, it has not, so far, delivered 596

any globally consistent and complete information on parent material. Likewise, the latest most accurate DEM of 597

the world (WorldDEM™) is an order of magnitude more accurate and more detailed than the SRTM DEM74 and 598

as such would be an ideal covariate for many regional and global soil mapping projects. However, it will likely 599

remain a commercial product available to larger business only (civil engineering and mineral exploration), and 600

hence of limited use to soil mappers. In that sense, USA’s NASA and USGS, with its MODIS, Landsat and similar 601

civil-applications missions will likely remain the main source of spatial covariate data to support global soil mapping 602

initiatives. 603

Other potentially useful covariates for predicting soil properties and classes could be maps of paleolithic i.e. 604

pre-historic climatic conditions of soil formation, e.g. glacial landscapes and processes, past climate conditions 605

and similar. These could likely become significant predictors of many current soil characteristics. Information 606

on pre-historic climatic conditions and land use is unfortunately often not available, especially not at detailed 607

cartographic scales, although there are now several global products that represent, for example, dynamics of land use 608

/ changes of land cover (see e.g. HYDE data set by Klein et al.75) through the past 1500+ years. As the spatial detail 609

and completeness of such pre-historic maps increases, they will become potentially interesting covariates for global 610

soil modeling. 611

Merging global and local: a system for automated soil image fusion 612

SoilGrids is not expected to be as accurate or relevant as locally produced maps and models that make use of 613

considerably greater amounts of local point data and finer local covariates. This is especially the case for OECD 614

countries that can draw upon orders of magnitude more soil profile data than were used in this work (for illustration, it 615

is estimated that German Federal agencies alone have in possession 2–3 million complete soil profiles). Comparison 616

of SoilGrids with similar national or continent-wide products shows that there is a general match in spatial patterns 617

for many physical and chemical soil properties, although there are still substantial differences (Fig 12). This indicates 618

that promising possibilities exist for further combination of local and global predictions (see further discussion). 619

For both Tasmania and California, SoilGrids seems to show somewhat smoother predictions, with some 620

smoothing of higher and lower values, which is especially visible in the cross-histogram scatter plots (Fig 12). 621

SoilGrids tends to overestimate soil pH for parts of Tasmania covered with rainforests mainly. There were not many 622

ground observations to support the prediction models for those areas, hence some systematic deviation could be 623

expected and will likely occur in other similar areas as well. We did not run a systematic comparison of values for 624

all soil properties, but Fig 12 indicates that merging SoilGrids250m with 100 m resolution predictions using higher 625

density of local soil profiles could help to gradually improve accuracies locally and to fill gaps in locally generated 626

predictions. 627

Mulder et al.10 correctly recognized that, in many areas in the world, locally produced predictions of soil 628

properties could likely be significantly more accurate than SoilGrids. Our hope is, nevertheless, that SoilGrids250m 629

will be used by national and regional soil data production teams with, or as a supplement to, local data, and that 630

ultimately most users will use merged (ensemble) global-local predictions for final decision making. We especially 631

recommend the following two frameworks for combining global and local data: 632
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Figure 12. Comparison between predicted soil pH: (above) SoilGrids (our predictions) for part of
California and predictions based on the SSURGO data set (for 0–200 cm depth interval) developed by the
National Cooperative Soil Survey, (below) SoilGrids (our predictions) for Tasmania and predictions based
on the Soil and Landscape Grid of Australia76 (for 0–5 cm depth interval). The correlation coefficients
between the two data sources are 0.79 and 0.71, respectively . Crosses on the map indicate soil profiles used
for generating SoilGrids.

1. SoilGrids predictions as covariate layers for producing finer resolution local predictions of soil properties (i.e. 633

as an input for downscaling), 634

2. Ensemble predictions = SoilGrids + local soil spatial prediction models combined. 635

Option 2, i.e. produce ensemble predictions for smaller areas for which finer resolution and/or higher quality 636

soil covariates are available, is possibly the most attractive option considering that local and global predictions can 637

then be generated independently. In that sense, SoilGrids could also be considered to be just one (the coarsest) 638

component of a global soil variation curve (Fig 13). But how many components to use to represent soil variation? 639

Are two components enough? How to optimally merge components where the accuracy is unknown (not enough 640

ground data for validation)? These will be areas of further research. In that context, Malone et al.77 recently made 641

progress in testing and developing methods for merging predictions from polygon-based maps and maps derived 642

using spatial predictions. However, running such models in an automated way for large areas (i.e. a system for 643

an automated soil image fusion) might take years before an operational system for global soil data fusion is fully 644

functional. 645
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Figure 13. SoilGrids can be considered the coarsest component of the global soil variation signal curve.
Other components, e.g. finer products based on local / more detailed 250–100 m resolution imagery, could
be added to produce a merged product.

Conclusions 646

Soil has long been considered one of the least developed global environmental layers with data available only at 647

coarse resolutions and with limited accuracy78, 79. ISRIC — World Soil Information has a vision and a mission to 648

produce soil information and map products that are globally complete and consistent, scientifically robust, open, 649

transparent and reproducible, continuously improved and updated, easy to discover and access, easy to use and 650

meaningful to users. With this next generation SoilGrids250m we hope to continue to demonstrate progress in the 651

production and distribution of improved global soil map products and to motivate, especially non-soil scientists, to 652

use these new soil data in their models and spatial planning, i.e. directly as input for generation of soil functional 653

properties and agro-ecological variables and indicators to support decision making. With its Open Data license and 654

web-services, we aim to serve quality soil information freely and universally for science, society and a sustainable 655

future. 656

We have demonstrated, using a series of cross-validation tests, that the new version of SoilGrids represents a 657

significant improvement upon the previous products at 1 km resolution, especially in terms of spatial detail and 658

attribute accuracy. Future work is required to determine if these improvements in accuracy could also help produce 659

more accurate Global Gridded Crop Models (GGCMs) that allow for more reliable estimates of impact of climate 660

change and land degradation on food production8. Data accessibility problems with SoilGrids have also been 661

addressed: SoilGrids are now available for viewing in fusion with satellite imagery via the data portal SoilGrids.org 662

(Fig 14). SoilGrids rasters can also be downloaded via FTP for smaller areas; at point locations through the SoilInfo 663

App and the REST SoilGrids. There should be fewer and fewer obstacles for ecologists, agronomists, hydrologists, 664

climatologists, foresters and spatial planners to discover, obtain and use soil data in their daily work. 665
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Figure 14. Basic design and functionality of SoilGrids.org: soil web-mapping browser that provides
interactive viewing of 3D soil layers. Reference administrative data, basic functionality and output data
license of SoilGrids.org are primarily based on OpenStreetMap.
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