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EXECUTIVE SUMMARY 

Land degradation is believed to be a severe and widespread environmental 
problem. It is pivotal to the United Nations Convention to Combat 
Desertification, the Convention on Biodiversity, and the Kyoto Protocol on 
Global Climatic Change. However, there is no authoritative measure of land 
degradation and countervailing land improvements; there is pressing need 
for an up-to-date, quantitative and reproducible assessment to support 
policy development for food and water security, environmental integrity, 
international aid programs, and national strategies for economic 
development and resource conservation. 
 
A quantitative global assessment of land degradation and improvement 
(GLADA) is proposed to identify: 1) the status and trends of land 
degradation; 2) hotspots suffering extreme constraints or at severe risk and 
their counterpoints - areas where degradation has been arrested or 
reversed. The objective of this pilot in North China is to develop a 
methodology using the 22-year NOAA-AVHRR GIMMS dataset of NDVI data 
and ancillary information to: i) test procedures for handling the dataset and 
build a NDVI database and ii) develop algorithms for analysis of the data. 

 

Two approaches have been followed: 

Statistical Indicators: The GIMMS NDVI data were extracted and geo-
referenced. Algorithms were developed to calculate indicators of land 
degradation: NDVI minimum, maximum, maximum-minimum, mean, sum, 
and coefficient of variation (CoV). Annual, growing season (May-October) 
and non-growing season (November-April) indicators were derived for each 
pixel; their temporal trends were determined by linear regression at annual 
intervals and mapped to depict spatial changes. A negative regression 
coefficient over several years indicates a decline of green biomass (by 
inference, land degradation if not accounted for by land use change) and a 
positive regression coefficient, an increase (land improvement). 
Modelling: An NDVI database for Eurasia was developed in MS Access. 
Spatial patterns of NDVI were compared with and combined with rainfall, 
temperature, net primary productivity (NPP) and land degradation 
information derived from the study area. Structured query language (SQL) 
was applied to query and calculate NDVI indicators and biophysical 
parameters. Subsequently, correlations of the NDVI indicators and their 
relationships with rainfall, temperature, net primary productivity (NPP) and 
rainfall-use efficiency (RUE) were statistically analyzed. ArisFlow was used 
to analyse the NDVI datasets; the HANTS algorithm was used to smooth 
and reconstruct the NDVI time-series and remove extreme values that 
might affect generalizations.  
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Correlations between the NDVI indicators are low to moderate (r2 0.25 – 
0.66) except for a very high correlation between mean and sum of NDVI (r2 
= 1), which may be considered alternates. Similar relations for their 
temporal trends, identified by the slopes of linear regressions, were found 
for the study area. Relations of the NDVI indicators and net primary 
productivity (NPP) with annual rainfall are only moderate, but high with 
monthly rainfall. The correlations between rain-use efficiency, calculated as 
the ratio between NPP and rainfall (RUENPP) and as ratio NDVI:rainfall 
(RUENDVI), are statistically significant (P < 0.001), and higher for the 
monthly intervals; they can be considered alternates. 
 
The results indicate that all NDVI indicators have biological meaning. 
Overall, green biomass increased over the 22-year period without close 
correspondence with annual rainfall; rather, there is a lag of a few years 
between diminished rainfall and diminished biomass production. Signs of 
declining green biomass production, indicating active land degradation, are 
localised. Where a diminishing trend is evident, this is clearly shown in the 
shape of the annual NDVI curve, which is attenuated well before climax of 
the growing season. Rain-use efficiency increased at Yulin, indicating land 
improvement, and decreased at Dingbian. 
 
This study has not considered whether the increase in green biomass, 
expressed as NDVI, has improved land quality. However, increased 
vegetation cover will decrease soil erosion and increase infiltration, water 
storage and soil organic matter. When this is demonstrated by field 
validation, the indices developed here could be used as input for an early 
warning system for land degradation. 
 
Keywords: Land degradation, remote sensing, North China, early warning 
system, NOAA-AVHRR, GIMMS NDVI 
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1. INTRODUCTION AND OBJECTIVES 

Land degradation is believed to be a severe and widespread environmental 
problem (Dregne et al. 1991, Reynolds & Stafford Smith 2002, UNCED 
1992). It is pivotal to the United Nations Convention to Combat 
Desertification, the Convention on Biodiversity, and the Kyoto Protocol on 
Global Climatic Change. However, there is no authoritative measure of land 
degradation and countervailing land improvements. The only harmonized 
global assessment of land degradation is the Global Assessment of Human-
Induced Soil Degradation (GLASOD) (Oldeman et al. 1991). It is a map of 
perceptions - the kinds, degree and relative extent of degradation, not a 
measure of degradation; and now out-of-date - land degradation and 
perceptions have moved on. There is pressing need for an up-to-date, 
quantitative and reproducible assessment of land degradation and 
improvement to support policy development for food and water security, 
environmental integrity, international aid programs, and national strategies 
for economic development and resource conservation. A quantitative global 
assessment of land degradation and improvement (GLADA) is now proposed 
to identify the status and trends of land degradation, hotspots suffering 
severe degradation or at severe risk, and their counterpoint - areas where 
degradation has been arrested or reversed. 
 
Biomass is an integrated measure of biological productivity. Its deviance 
from the norm may be taken as a measure of land degradation or 
improvement. Global satellite data, in particular the normalized difference 
vegetation index (NDVI) 1  or greenness index, enable measurement of 
changes in biomass from the field and local validation scale (1:10 000) to 
the degree of generalization required for national and regional action, or to 
support international policy development (1:1 million to 1:5 million). Local 
and regional norms may be calculated by stratifying the land area according 
to climate, soils and terrain, and land use/vegetation; deviance may then 
be calculated locally and regionally.  
 
NDVI has a strong linear relationship with the fraction of photosynthetically 
active radiation absorbed by the plant (Asrar et al. 1984, Sellers 1987, 
Sellers et al. 1997); many studies have shown strong correlation between 
NDVI and vegetation cover (e.g. Purevdoj et al. 1998) and above-ground 
net primary productivity (Running and Nemani 1988, Potter et al. 1993, 
Paruelo et al. 1997, Wang et al. 2004); so NDVI has been applied in the 
studies of land degradation at local and regional scales (e.g. Asner et al. 
2003, 2004, Archer 2004, Asner and Heidebrecht 2005, Bastin et al. 1995, 

                                       
1 NDVI is the difference in reflectance between the AVHRR near-infrared and visible bands, 
divided by the sum of these two bands (Sellers 1985, Sellers et al. 1994, Tucker 1980). 
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Bradley and Mustard 2005, Budde et al. 2004, Diouf and Lambin 2001, 
Evans and Geerken 2004, Geerken and Ilaiwi 2004, Holm et al. 2003, Li et 
al. 2004, Maselli et al. 1998, 2003, Millch and Weiss 2000, Mouat et al. 
1997, Nicholson et al. 1998, Pelkey et al. 2000, Prince et al. 1998, Ringrose 
et al. 1996, Runnström 2000 2003a b, Singh et al. 2004 2005, Stoms and 
Hargrove 2000, Symeonakis and Drake 2004, Tanser and Palmer 1999, 
Thiam 2003, Tottrup and Rasmussen 2004, Tucker et al. 1991a b, Weiss et 
al. 2001 2004). 
 
The objective of this pilot is to develop a methodology for assessing land 
degradation and improvement using NOAA-AVHRR time-series data and 
ancillary information - specifically to: i) test procedures for handling of the 
dataset and building an NDVI database, ii) develop algorithms for analysis 
of the data, iii) analyze the NDVI deviations and trends in the study area. 
The following sections deal with: (2) an overview of the study area and the 
datasets used for the study; (3) the methodology developed so far – data 
handling procedures, statistical analysis of NDVI indicators of degradation 
and improvement, data modelling and GIS analysis; (4) results, a brief 
discussion of the results in relation to the study area, and assessment of  
the potential usefulness of the different NDVI and derived indicators of land 
degradation and improvement; (5) summary and conclusions. 
 
 
 

2. STUDY AREA AND DATASETS 

2.1 Study area 

The pilot area is Yulin Prefecture, Shaanxi Province, North China, latitude 
36˚ 57’ – 39˚ 34’ N and longitude 107˚ 28’ - 111˚ 15’ E. It encompasses 
twelve counties: Yulin (Yuyang district), Shenmu, Fugu, Jiaxian, Mizhi, 
Suide, Wubu, Zizhou, Qinjian, Hengshan, Jingbian and Dingbian which 
encompass 42 986 km2 with some 3.4 million inhabitants (Figs. 1a; 1b). It 
is a transitional zone between the Mu Us Desert and the Loess Plateau; 
sandy land, in the northern part, and hilly loess, in the middle-south, each 
make up about half of the area. Elevation increases from the southeast to 
the northwest; mean elevation is 1000m above sea level, the maximum is 
1907m on Mount Baiyun. Climate ranges from arid in the northwest to sub-
humid in the southeast: spring is dry and windy, summer short and hot with 
rainfall maximum, autumn brings short rains, followed by a long dry and 
cold winter. Mean maximum temperature is 32ºC, mean minimum -6.1ºC. 
At Yulin, mean annual rainfall is 396mm, ranging from 159-695mm (1934 
to 2003); at Dingbian, mean annual rainfall is 293mm, ranging from 145 to 
587mm (1954 to 1996). Most of the rain falls in July and August, and there 
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is a large inter-annual variation; spatially, rainfall decreases from the 
southeast towards the northwest. Soils are Kastanozems and Arenosols 
(WRB 2005) with natural vegetation grading from forest steppe, through 
steppe, to desert.  
 
It is an agro-pastoral region with important coal and oil exploitation – a 
diverse but vulnerable environment in which rampant land degradation has 
been reported by several observers (Liu 1996, Wu 1996, Gao et al. 2001, 
Zhang et al. 2002, Liu and Gao 2002, Liu et al. 2003 (see Appendix I), 
Runnström 2000 2003a b, Li et al. 2004). Land degradation is reported to 
be a severe environmental problem with social and economic implications 
(Li 1998).  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 1a.  Location of GLADA pilot in North China 
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Figure 1b.  Image of the study area from Landsat4/5 1990 
  (source: zulu.ssc.nasa.gov.mrsid) 
 
 
 
2.2 Datasets 

2.2.1 GIMMS datasets  

The Global Inventory Modelling and Mapping Studies (GIMMS) dataset was 
collected between 1981 and 2002 by the advanced very high resolution 
radiometer (AVHRR) on National Oceanic and Atmospheric Administration 
(NOAA) satellites. It comprises two-weekly NDVI images with 8km spatial 
resolution, corrected for calibration, view geometry, volcanic aerosols, and 
other effects unrelated to vegetation change (Tucker et al. 2004). The 
accuracy of GIMMS is proven to be suitable for a global assessment; 
precursors were used to derive greenness trends in the Northern 
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Hemisphere (Myneni et al. 1997) and assess vegetation cover and erosion 
classes (Hochschild et al. 2003). 

 

2.2.2 Climatic and biomass data 

Daily rainfall and temperature data are available for Yulin and Dingbian. 
Monthly net primary productivity (NPP) data (1981-1998) derived from the 
Carbon Exchange between Vegetation, Soil and Atmosphere (CEVSA) model 
(Cao and Woodward 1998a b) were provided by Tao et al. (personal 
communication). Data for land degradation status for six counties 
(Dingbian, Jingbian, Hengshan, Yulin, Shenmu, and Fugu) were provided by 
Liu et al. (2003). 
 
 
 

3. METHODOLOGY 

Two approaches have been developed to assess land degradation: statistical 
analysis and spatial modelling. Figures 2 and 3 depict the sequence of 
activities. 
 
 
 
3.1 Statistical analysis of NDVI indicators 

NDVI data were extracted and geo-referenced using ERDAS IMAGINE and 
ArcGIS. Algorithms were developed to calculate indicators of land 
degradation, namely: NDVI minimum, maximum, maximum-minimum, 
mean, sum, and coefficient of variation (CoV). Annual, growing season 
(May-October) and non-growing season (November-April) indicators were 
derived for each pixel; their temporal trends were determined by linear 
regression at annual intervals. A negative regression coefficient indicates a 
decline of green biomass and a positive regression coefficient, an increase - 
except for CoV which indicates trends in variability.  
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Figure 2. Flowchart of the procedures for statistical analysis 
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3.2 Modelling  

In the modelling approach, the GIMMS NDVI images of the Eurasian 
continent (1981-2002) and their longitude and latitude images were 
extracted and converted into *.dat and *.txt formats using ERDAS IMAGINE 
8.6 and UltraEdit software, respectively, and imported into MS Access. The 
database was automatically geo-referenced for each pixel with unique 
identifier (ID) from 1 to 2.5 million.  
 
The topographic map of the six counties discussed in Appendix 1 was 
digitized and geometrically transformed to the same projection as the 
GIMMS data set (Albers conical equal-area projection with the Clark 
ellipsoid) using ground control points. The identifiers of the NDVI pixels 
within each sub-area (Chinas_ID) were identified and imported into MS 
Access.  

 
The land degradation indicators and geo-located climate and biomass data 
were imported into MS Access to create four datasets:  
 
NDVI81_02: 22-year NDVI values. For example, Ea8108a means Eurasia 
NDVI values in year 1981 and the first half of the August (08a), other 
attributes of the entity NDVI81_02 can be read as the same way except the 
change in years and months. 
 
Sub-area and severity level: The independent assessment of land 
degradation from Liu et al. 2003; consists of sub-area_ID and the land 
degradation severity of the six counties. Sub-area_ID is defined as a 
primary key. 
 
LD_criteria: The land degradation indicators derived from Liu et al. 2003. 
The -min and -max values are the criteria used to indicate the minimum 
and maximum range of the indicators. For example, severe land 
degradation (level I) is defined as vegetation coverage <10 per cent. 
 
Climate and biomass: Monthly net primary productivity data from 1981 to 
1998 and monthly rainfall data between 1981 and 2002 for Yulin and 
Dingbian, and their locations.  
 
Data modelling (Watson 1999), structured query language (SQL) and 
statistics were used to generate indicators for vegetation, land degradation 
or improvement and further analyses (Figs. 3 and 4). 
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4. RESULTS AND DISCUSSION 

4.1 Trends in NDVI indicators 

Table 1 summarises the values of the NDVI indicators for annual, growing 
season and non-growing season periods. Temporal trends for each pixel, 
determined by the slope of the linear regression equation, were classed as 
no change (slope <0.0001 and >-0.0001), increase (positive slope ≥0.0001), 
and decrease (negative slope ≤-0.0001). Spatial patterns are depicted in 
Figures 5 to 10.  
 
 
Minimum NDVI 
 
The minimum NDVI is the lowest value that occurs in any one year (annual) 
which is almost invariably at the end of winter, any one growing season, or 
any one non-growing season. Fig. 5 shows the spatial patterns and 
temporal trends of multi-year mean annual-, growing season-, and non-
growing season minimum NDVI. Over the 22-year period: annual values 
tended to increase over 67% of pixels, 23% decreased and 10% remained 
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unchanged; for the non-growing season, the picture is much the same with 
increase in 73% of pixels, decrease in 17% and 10% unchanged; but for 
the growing season, 90% increased, 6% were unchanged and only 4% 
decreased.  
 
The different behaviour of the three indicators might be attributed to land 
use change (Li et al. 2004, Fig. 12): conversion of barren land to grassland 
would increase minimum biomass in the growing season; in contrast, 
change from grassland to arable would decrease minimum green biomass 
(NDVI) in the non-growing period.  
 
Correlation between annual rainfall and minimum NDVI is relatively low 
(Table 6) so variation in minimum NDVI should be used with caution as an 
indictor of land degradation or recovery. However, it serves as a baseline 
for other parameters. 
 
 
Table 1. Statistics of NDVI indicators 
 
    NDVI indicators Range No change Increase Decrease 

  (minimum, maximum, mean) no. (%) no. (%) no. (%) 

 annually     

 Minimum NDVI 0.006        0.105 0.08 80 (10) 537 (67) 182 (23) 

 Maximum NDVI 0.006        0.663 0.445 1   (0.1) 798 (99.9) 0    

 Max-min NDVI 0.000273  0.324 0.189 25 (3) 769 (96) 5    (1) 

 Mean NDVI 0.006        0.263 0.192 41 (5) 726 (91) 32  (4) 

 Sum NDVI 3.1           138 100.6 1   (0.1) 778 (96.9) 20  (3) 

 NDVI CoV 0.00074    0.472 0.307 24 (3) 738 (92) 37  (5) 

     Growing season     

 Minimum NDVI 0.006        0.15 0.115 45 (6) 720 (90) 34  (4) 

 Maximum NDVI 0.006        0.663 0.445 57 (7) 738 (92) 4    (1) 

 Max-min NDVI 0.003        0.591 0.375 35 (4) 720 (90) 44  (6) 

 Mean NDVI 0.006        0.338 0.241 41 (5) 746 (93) 12  (2) 

 Sum NDVI 1.6           89 63.5 1   (0.1) 746 (92.9) 52  (7) 

 NDVI CoV 0.00037    0.316 0.196 44 (6) 454 (57) 301 (38) 

     Non-growing season     

 Minimum NDVI 0.006        0.176 0.119 77 (10) 579 (73) 143 (17) 

 Maximum NDVI 0.006        0.247 0.17 48 (6) 714 (89) 37   (5) 

 Max-min NDVI 0.003        0.108 0.049 0  799 (100) 0  

 Mean NDVI 0.006        0.201 0.142 70 (9) 636 (80) 93  (11) 

 Sum NDVI 1.6           53.1 37.2 24 (3) 661 (83) 114 (14) 

 NDVI CoV 0.001        0.181 0.102 42 (5) 681 (85) 76   (10) 
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Maximum NDVI 
 
Maximum NDVI represents the maximum green biomass. The patterns of 
monthly maximum NDVI (Fig. 14), personal experience and communication 
with local experts suggest that peak biomass occurs between late July and 
early September, mostly in August.  
 
The large spatial variation in maximum NDVI reflect the diverse landscape 
and climate but the 22-year trends of annual and growing-season values 
are positive almost everywhere in the study area (Fig. 6). Over the 22-year 
period, annual and growing-season maximum NDVI increased over 93% of 
the area while 7% remained unchanged. For the non-growing period, it 
tended to increase over 89% of the area, remained unchanged over 6%, 
while 5% decreased. 
 
 
Maximum-minimum NDVI  
 
The difference between maximum and minimum NDVI over the year reflects 
biomass production. For both annual and growing season max-min NDVI, 
more than 90% of the pixels tended to increase, 3-4% remained unchanged, 
while less than 5% decreased (Fig. 7).  
 
 
Mean NDVI  
 
Fig. 8 shows the spatial pattern of multiyear average mean NDVI and their 
trends. The spatial patterns of growing season mean NDVI and annual mean 
are the same, so are the slope coefficients of their linear regression 
equations: more than 91% of the pixels increased, 5% remained unchanged 
and less than 4% decreased. For non-growing season, however, more than 
11% of the total pixels were negative, 9% remained unchanged and 80% 
positive.  
 
Correlations between annual rainfall and mean NDVI were weak at Yulin and 
moderate at Dingbian (Table 6). Inter-annual variability in rainfall would not 
be reflected in the variance of both trends and magnitude of the mean NDVI. 
 
 
Sum or integrated NDVI 
 
The sum of fortnightly NDVI values for the year (annual) and for the 
growing season, most nearly integrates biomass and biomass production, 
respectively. 
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The spatial distribution of the annual and growing season sum NDVI are 
similar; likewise, the slope coefficients of their linear regression equations 
(Fig. 9). Rather more pixels with negative slopes occurred for the growing 
season (52) than for the annual sum NDVI (12 pixels).  
 
The pattern of integrated NDVI was very similar to the max-min and mean 
NDVI: for the annually integrated NDVI 97% of the total pixels increased; 
93% increased for the growing season. 
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Figure 5. Mean minimum NDVI 1981-2002: top left - annual; middle left - growing season (May-Oct); 
bottom left – non-growing season (Nov-Apr). Classified maps of slope coefficients of linear regression for 
minimum NDVI: top right - annual; middle right - growing season; bottom right - non-growing season 
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Figure 6. Mean maximum NDVI 1981-2002: top left - annual; middle left - growing season 
(May-Oct); bottom left - non-growing season (Nov-Apr). Classified maps of slope coefficients 
of linear regression for maximum NDVI: top right - annual; middle right - growing season; 
bottom right - non-growing season 
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Figure 7. Mean maximum-minimum NDVI 1981-2002: top left - annual; middle left - growing season 
(May-Oct); bottom left - non-growing season (Nov-Apr). Classified maps of slope coefficients of linear 
regression for maximum-minimum NDVI: top right - annual; middle right - growing season; bottom right 
- non-growing season 
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Figure 8. Average mean NDVI for 1981-2002: top left - annual; middle left - growing season (May-
Oct); bottom left - non-growing season (Nov-Apr). Classified maps of slope coefficients of linear 
regression for mean NDVI: top right - annual; middle right - growing season; bottom right - non-
growing season 
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Figure 9. Mean sum NDVI 1981-2002: top left - annual; middle left - growing season (May-Oct); 
bottom left - non-growing season (Nov-Apr). Classified maps of slope coefficients of linear regression for 
sum NDVI: top right - annual; middle right - growing season; bottom right - non-growing season 
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Figure 10. Mean NDVI CoV 1981-2002: top left - annual; middle left - growing season (May-Oct); 
bottom left - non-growing season (Nov-Apr). Classified maps of slope coefficients of linear regression for 
NDVI CoV: top right - annual; middle right - growing season; bottom right - non-growing season 
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Coefficients of variation (CoV)  
 
CoV can be used to compare the amount of variation in different sets of 
sample data. It is a dimensionless quantity; all CoV values are at the same 
scale of magnitude which facilitates comparisons of data collected over 
different time periods. CoV images were generated by computing for each 
pixel the standard deviation (STD) of the set of individual NDVI values and 
dividing this by the mean (M) of these values (CoV = STD/M). This 
represents the dispersion of NDVI values relative to the mean value over 
time shown in Fig. 11: 1) positively increasing dispersion, 2) positively 
decreasing dispersion, 3) negatively decreasing dispersion, and 4) 
negatively increasing dispersion. 
 
A positive change in the value of a pixel-level CoV over time relates to 
increased dispersion of values, not increases NDVI; similarly, a negative 
CoV dispersion means decreasing dispersion of NDVI around mean values, 
not decreasing NDVI. As an indication of variability, CoV may be combined 
with other biomass parameters, such as maximum-minimum NDVI, to 
detect land degradation or improvement (Table 2). 
 
 
Table 2. Combination of NDVI and CoV for detection of biomass variation 
 

Max-min NDVI  NDVI CoV interpretation of biomass variation 

+   + increase + unstable 

-   + decrease + unstable 

+   -  increase + stable 

-   -  decrease + stable 
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Figure 11. Patterns of NDVI CoV over time 
 
 
The spatial distribution of average growing season NDVI CoV is similar to 
the annual NDVI pattern but their temporal trends are quite different: for 
the growing period, 301 pixels display a negative trend and 454 a positive 
trend; for the annual period, 37 show a negative trend and 738 a positive. 
The spatial pattern and trend are different again for the non-growing season 
(Table 1, Fig. 10).  
 
301 pixels show a negative trend in the growing season NDVI CoV. Of these, 
only 5 pixels showed a negative trend in the mean NDVI and 296 pixels 
showed positive trend. These values emphasize that negative trend of CoV 
does not mean biomass decrease, and vice versa. Rather, the trends in 
NDVI CoV may reflect land cover change.  
 
Directly connecting declining values of the NDVI CoV to vegetation or land 
degradation is incorrect - although several authors have done so, for 
example Weiss et al. (2001), Milich and Weiss (2000), Tucker et al. (1991a) 
and Asner et al. (2005).  
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Interpretation and discussion of NDVI indicators 
 
If land use remains stable, changes in NDVI reflect the trend of green 
biomass production that may be attributed to land quality, and the success 
of management in dealing with variables such as climate, pests and disease.  
 
Overall, the green biomass increased in the study period. This can hardly be 
explained by changes in rainfall or land use: 
1. Correlations between annual rainfall and annual maximum NDVI are 

weak at Yulin and moderate at Dingbian (Table 6) and the trend of 
rainfall is downwards whereas the trend of NDVI is upwards.  

2. For the study area, conversion either from barren land to grassland, 
grassland to cropland or from agricultural land to built-up land could 
lead to the decrease in NDVI in the non-growing season and increase in 
growing season. But only 6.1% of the total area had seen a considerable 
change in land use - cropland, forest, grassland and urban and/or built-
up land have increased by 3.4%, 5.4%, 3.5% and 18.2% respectively; 
barren land has decreased by 22% (Li et al. 2004, Fig. 12).  

3. We may also look to changes in grassland and arable management, such 
as increased application of fertilizer and manure which would increase 
biomass production. In the context of decreasing rainfall, this may be 
equated with land improvement.  

 
Distinction needs to be made between land degradation/improvement and 
land use change; they may be related but they are not the same thing. 
Evans and Geerken (2004) developed several discriminators between 
climate-induced and human-induced land degradation depending on annual 
maximum NDVI. Asner and Heidbrecht (2005) used airborne imaging 
spectroscopy to measure photosynthetic and senescent canopy cover and 
bare soil extent; they found that land degradation was associated with a 
persistent increase in both photosynthetic vegetation (PV) and bare soil, 
and a lasting decrease in non-photosynthetic vegetation (NPV); there was 
no change in the spatial variability of PV but its temporal variation 
decreased substantially. In contrast, degradation was associated with an 
increase in the spatial variability of NPV, while its temporal variation did not 
change. Both the spatial and temporal variation of bare soil decreased with 
land degradation. At the desert margin, desertification appeared to be 
linked to a decoupling of vegetation responses to inter-annual rainfall 
variation: higher winter rainfall led to decreased springtime spatial 
variability in the PV cover; higher summer rainfall resulted in decreased 
variability in PV cover; the effects of desertification on NPV dynamics were 
more than three times greater than on PV or bare soil dynamics.  
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Using remotely sensed PV and NPV as proxies for net primary production 
(NPP) and litter dynamics, respectively, desertification decreases the 
temporal variability of NPP and increases spatial variation of litter 
production and loss.  
 
We should also note the large, recent increase in the exploitation of coal in 
the north-east and oil in the south-west of the study area. The spatial 
distribution of the negative trends in mean, max-min and sum NDVI 
occurred mainly in the northeast and southwest parts of the area. 
 
The results support the previous studies of Gao et al. (2001), Zhang et al. 
(2002), Runnström (2000), Runnström et al. (2003a, b) but conflicts with 
Liu (1996) and Liu et al. (2003). Yulin prefecture is China's trial area for 
tackling land degradation and desertification. Progress has been reported in 
this region in the northern part of the province (China Daily, 6 September 
2001, http://www.din.net.cn/book2/ctk-12.htm).  
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Figure 12. Land use change, Yulin, 1986–2000 (from Li et al. 2004) 
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4.2 Correlations between NDVI indicators 

Correlation coefficients between NDVI coefficients of variation (CoV), mean, 
minimum, maximum and sum and the slopes of their linear regression 
equations were queried and statistically analyzed at pixel level (Table 3). 
The correlations between NDVI CoV, mean, maximum, minimum and sum 
are moderate, except for the coefficient between mean and sum of NDVI 
which may be considered alternates. Similar relationships were found for 
the trends of NDVI indicators over the 22 years period.  
 
Table 3. Coefficients of variation between NDVI CoV, mean, max, min and sum* 
 

NDVI indicators 
Mean

v 
CoV 

Mean
v 

Max 

Mean
v 

Sum 

Mean
v  

Min 

CoV 
v 

Max 

CoV 
v 

Sum 

CoV 
v  

Min 

Max 
v 

Sum 

Max 
v  

Min 

Sum 
v  

Min 

NDVI correlation 
coefficient 

0.34  0.66  1.00  0.34  0.65  0.34  0.63  0.66  0.25  0.34  

NDVI slope 
correlation 
coefficient 

0.33  0.72  0.99  0.21  0.74  0.33  0.53  0.72  0.09  0.21  

*t-test, n=799; P<0.001 

 
 
 
4.3 Biophysical parameters calculated from NDVI for the land 

degradation types 

Average minimum, maximum and mean NDVI of the land degradation levels 
for each month over time 1981-2002 were queried (Table 4) and their 
biophysical parameters were calculated according to the SiB land cover 
reclassification with NDVI-fraction of photosynthetically active radiation 
absorbed by the canopy (FPAR) scaling values (Defries et al. 1998) and 
ratio vegetation index (RVI) – FPAR relationship (Los et al. 2000) (Table 5). 
There appear to be differences in the range and seasonal trend of NDVI 
indicators for different degrees of degradation (determined independently of 
NDVI). This is even more true of the biophysical parameters like rain use 
efficiency and net primary productivity. 
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Table 4. Range of NDVI indicators for different land degradation levels (I-IV)* 
 
Severity 
level 

Indicator Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Severe  Mean NDVI 0.16 0.16 0.17 0.20 0.37 0.38 0.43 0.45 0.39 0.27 0.19 0.16 

(I) Min NDVI 0.14 0.14 0.15 0.17 0.30 0.32 0.37 0.41 0.34 0.23 0.17 0.14 

  Max NDVI 0.17 0.18 0.19 0.22 0.41 0.43 0.48 0.49 0.42 0.30 0.20 0.17 

High  Mean NDVI 0.17 0.17 0.20 0.28 0.36 0.39 0.44 0.48 0.42 0.31 0.22 0.18 

(II) Min NDVI 0.13 0.13 0.17 0.23 0.30 0.33 0.39 0.44 0.38 0.26 0.18 0.14 

  Max NDVI 0.20 0.20 0.24 0.31 0.41 0.46 0.48 0.51 0.47 0.34 0.25 0.22 

Medium  Mean NDVI 0.18 0.18 0.19 0.25 0.36 0.44 0.49 0.52 0.47 0.34 0.22 0.18 

(III) Min NDVI 0.13 0.14 0.16 0.20 0.25 0.34 0.42 0.45 0.38 0.27 0.19 0.14 

  Max NDVI 0.21 0.21 0.22 0.30 0.46 0.55 0.58 0.58 0.53 0.40 0.25 0.22 

Low Mean NDVI 0.19 0.18 0.19 0.22 0.32 0.44 0.50 0.51 0.44 0.31 0.21 0.19 

(IV) Min NDVI 0.16 0.15 0.17 0.19 0.28 0.39 0.45 0.47 0.35 0.25 0.18 0.16 

  Max NDVI 0.20 0.20 0.21 0.24 0.39 0.49 0.54 0.55 0.48 0.34 0.23 0.21 
*t-test, n=293, P<0.05 (ref. Dolton et al., 1989; van Reeuwijk and Houba, 1998)  

 
 
Table 5. Biophysical parameters calculated from NDVI for the land degradation types 
 

Severity level NDVImin NDVImean NDVImax FPAR1 RVI2 RVC3(%) LAIg4

Severe (I) 0.14 0.28 0.41 0.392 1.78 7.32 0.86 

High (II) 0.13 0.30  0.44 0.417 1.86 9.12 1.24 

Medium (III) 0.13 0.32 0.45 0.441 1.94 11.05 2.23 

Low (IV) 0.15 0.31 0.47 0.429 1.90 10.07 2.14 

1. FPAR = Fraction of Photo-synthetically Active Radiation absorbed by the green leaves of the canopy 

2. RVI = Ratio Vegetation Index 

3. RVC = Rate of Vegetation Coverage (Purevdorj et al. 1998)  

4. LAIg = Green Leaf Area Index  
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4.4 Temporal trends in NDVI according to the severiy of land 
degradation 

Liu et al. (2003) combined measurements of vegetation cover, coverage of 
drifting sand, annual desertification rate and population pressure in a 
weighted index of land degradation for six counties of the study area. They 
derived classes I (severe) to IV (low) (Appendix I). Figure 13 shows the 
trends of the integrated NDVI for their severe to low classes: areas 
classified as severe (level I) showed decreasing NDVI indicators while 
others (II-IV) increased over the 22-year period. 
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Figure 13. Green-wave (NDVI) for the land degradagtion levels 
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4.5 Wavelet analysis 

Figures 14 shows the patterns of monthly average minimum, maximum and 
mean NDVI for the different severity levels of land degradation. The gross 
trends in minimum, maximum and mean NDVI are similar for the various 
levels of land degradation; they change with local phenology i.e. seeding in 
May, growth through summer (June-September), and harvest in October. 
However, comparison of the shapes of the annual NDVI curves (wavelets) 
with other measures of degradation is revealing: compared with the NDVI 
wavelet for areas judged not degraded, severely degraded areas show a 
lower minimum NDVI baseline, delayed onset of growth, and sharply 
attenuated growth in spring (May), with significantly lower summer 
production levels. 
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Figure 14. Wavelets of NDVI indicators for different degrees of land degradation 
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4.6 Trend in yearly integrated NDVI for different degrees of 
land degradation 

Fig. 15 shows trends in yearly integrated NDVI 1981-2002 for different 
degrees of land degradation. For areas classified as severely degraded, 
NDVI decreased; while for areas classed as high to low degradation 
increased (Fig. 15A); the integrated NDVI for the whole study area 
increased over the 22 years period (Fig. 15B).  
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Figure 15. Trend in yearly integrated NDVI over time 1981-2002 in the six counties 
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4.7 Relationships of NDVI with rainfall and temperature  

Figure 16 compares trends in annual precipitation with NDVI. Over the 20-
year period, rainfall has been decreasing and yet the area as a whole shows 
increasing green biomass (Fig. 15B). For individual pixels, there may be 
little or no relation with rainfall (Table 6).  
 
 
Table 6. Correlation coefficients between annual rainfall and NDVI indicators 
 
Sites 

Rainfall v  
mean NDVI 

Rainfall v  
max NDVI 

Rainfall v  
min NDVI 

Rainfall v 
sum NDVI 

Rainfall v 
NDVI CoV  

Yulin* 0.049  0.053  0.366  0.049  0.325  

Dingbian** 0.644  0.549  0.417  0.504  0.608  

*t-test, n=22, P<0.01; ** t-test, n=16, P<0.05 
 
 
NDVI is strongly correlated with monthly precipitation and temperature; 
most rain falls during summer growing period – plant growth responding to 
increasing warmth and moisture in spring and summer (Table 7, Fig. 17). 
 
 
Table 7. Correlation coefficients of NDVI with monthly rainfall and temperature 
 

Sites rainfall v NDVI temperature v NDVI   

Yulin* 0.607 0.719  

Dingbian** 0.618    No data   

*t-test: n=257, P<0.001; **t-test: n=192, P<0.001 
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Figure 16. Annual rainfall and NDVI at Yulin (A) and Dingbian (B) from 1981 to 1996/2002 
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Figure 17. Monthly rainfall respectively temperature and NDVI at Yulin 
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4.8 Relationships between rainfall and NPP 

NPP is the net flux of carbon from the atmosphere into a unit area of 
vegetation per unit time (Schlesinger 1991); it is a key driver of ecological 
processes so provides a good measure of land degradation (Milton et al. 
1994, Pickup 1996). Half-monthly NDVI values were summed to monthly 
NDVI for the same locations as the data from Tao et al. (Tao, personal 
communication) to explore the relationship between NPP and NDVI. Linear 
regression between monthly NPP and NDVI was built as follows: 
 

NPPm [g C m-2 month-1] = 41.691 ∗ ΣNDVIm + 33.192   [1] 
 
where NPPm  is monthly NPP and ΣNDVIm the sum of first and second half-
monthly NDVI (n = 1768, r = 0.283, t-test P<0.001) 
 
Then growing-season and yearly sums of NPP and NDVI were integrated. 
The resulting relationships are: 
 

NPPMay-Oct [g C m-2 (May-Oct)-1] = 13.78 ∗ ΣNDVIMay-Oct + 281.5 [2] 
 
where NPPMay-Oct is the summation of NPP between May and October, 
ΣNDVIMay-Oct is the integrated NDVI for May-October (n = 303, r = 0.18, t-
test P<0.001) and 
 

NPPa [g C m-2 yr-1] = 0.0349 ∗ ΣNDVI + 294.85   [3] 
where NPPa  is the annual sum of NPP; ΣNDVI the annual NDVI  
(n = 303, r = 0.18, t-test P<0.001) 
 
 
The monthly rainfall data for Yulin and Dingbian were taken to link NPP to 
NDVI (Table 8). There are fairly poor agreements between model-based 
NPP and remotely-sensed estimates of the total green biomass (NDVI) for 
annual time intervals but better at monthly intervals; NPP seems to be in 
step with monthly rainfall with no significant time lag.  
 
The trend in NPP over time in the area, as a whole, increased (Fig. 18). 
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Table 8. Correlations of NPP with NDVI and precipitation at Yulin and Dingbian* 
 
 

Parameters  Time intervals Yulin Dingbian 

 NPP-NDVI  Yearly  NPP=4.0696NDVI+300  
r=0.09, n=18 

NPP=44.362NDVI+87.013 
r=0.381, n=16 

 
 May-October NPP=3.5355NDVI+284.48 

r=0.066, n=18 
NPP=32.752NDVI+155.13 
r=0.315, n=16 

   Monthly NPP=28.621NDVI+32.406 
r=0.253, n=104 

NPP=49.644NDVI+20.621 
r=0.273, n=94 

 NPP-
Precipitation 

 Yearly NPP=0.8327Preci+8.9674 
r=0.66, n=18 

NPP=0.3231Preci+165.89 
r=0.44, n=16 

  May-October NPP=0.742Preci+52.976 
r=0.73, n=18 

NPP=0.3121Preci+158.77 
r=0.46, n=16 

  Monthly NPP=0.3204Preci+32.852 
r=0.51, n=104 

NPP=0.3009Preci+26.779 
r=0.50, n=94 

   Monthly (1 
month lag of 
NPP) 

NPP=0.0756Preci+45.598 
r=0.038, n=103 

NPP=0.0532Preci+37.115 
r=0.087, n=93 

* t-test; P<0.001 
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Figure 18. Temporal trends in net primary productivity (1981-2002) 
 
 
 
4.9 Rain-use efficiency 

A reduction in NDVI does not necessarily indicate land degradation; green 
biomass also fluctuates between and within years according to phenology, 
variation in rainfall, and changes in land use – all of which may be unrelated 
to the land degradation. Similarly, NPP may not serve as an indicator of 
land degradation without taking the rainfall into account. 
 
Rain-use efficiency (RUE) – the ratio of NPP to precipitation – seeks to 
overcome this problem by combining information on biomass production 
and rainfall (Prince et al. 1998, Nicholson et al. 1998). RUE tends to 
decrease when aridity and potential evapotranspiration increase; it has also 
been shown that RUE is lower in degraded arid lands than in equivalent un-
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degraded areas (Le Houerou 1984). Negative deviations from the 
conservative value of RUE may provide a useful index of land degradation. 
 
Temporal trends in RUE, computed as the ratio between NPP and rainfall 
(hereafter referred to as RUENPP) and ratio between NDVI and rainfall 
(hereafter referred to as RUENDVI), increased at Yulin and decreased at 
Dingbian (Fig. 19). This suggests land improvement at Yulin and 
degradation at Dingbian; Yulin has taken counter-measures against 
desertification such as increasing vegetation cover through aerial seeding, 
direct planting, sand dune stabilization, fencing and shelterbelt systems for 
farmland and pasture (Wu et al. 1997, Zhu and Wang 1993). In the 
Dingbian area, in contrast, the oil industry has encroached upon grassland 
and cropland.  
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Figure 19. Trends in rain-use efficiency 
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The correlation between RUENPP and RUENDVI at annual intervals is significant 
with correlation coefficients of 0.33 at Yulin (n=18, t-test P<0.01) and 0.74 
at Dingbian (n=16, t-test P<0.01), respectively (Fig. 20); and higher at 
monthly intervals: r=0.81 at Yulin (n=104, t-test P<0.01); and r=0.74 at 
Dingbian (n=94, t-test P<0.01)(Fig. 21),  so NDVI could be used as a proxy 
for NPP. 
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Figure 20. Relationships of RUENPP with RUENDVI at annual intervals 
 
 

ISRIC Report 2005/06 



38  GLADA pilot study in North China 

 

 
 
 
 
 
 
 
 

Yulin

y = 0.0113x + 0.0052
r = 0.81, n = 104

0,00

0,05

0,10

0,15

0,20

0 2 4 6 8 10 12 14 16
RURNPP

RU
E N

DV
I

Dingbian

y = 0.008x + 0.0062
r = 0.59,  n = 94

0,00

0,05

0,10

0 2 4 6 8
RUENPP

RU
EN

DV
I

10

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21. Relationships of RUENPP with RUENDVI at monthly intervals 
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5. SUMMARY AND CONCLUSIONS 

• All NDVI indicators have biological meaning. Their temporal trends 
can be indicated by the slope of the linear regression equation. NDVI 
CoV, however, cannot be used to directly reflect trends in green 
biomass change; it should be combined with other indicators for 
detection of biomass degradation or improvement.  

 
• Correlations of the NDVI indicators and net primary productivity 

(NPP) with annual rainfall are low to moderate, but higher with 
monthly rainfall. Rain-use efficiency, both computed as the ratio 
between NPP and rainfall (RUENPP) and as ratio between NDVI and 
rainfall (RUENDVI), increased at Yulin and slightly decreased at 
Dingbian. The correlations between RUENPP and RUENDVI are 
statistically significant, and higher at the monthly intervals, they can 
be alternates. 

 
• Analyses of average annual, growing season and non-growing season 

NDVI indicators and their temporal trends indicate that the green 
biomass, overall, increased over the 22-year period without close 
correspondence with rainfall. Signs of declining green biomass 
production, which may indicate active land degradation, are localised. 
This result supports the previous studies of Gao et al. (2001), Zhang 
et al (2002), Runnström (2000) and Runnström et al. (2003), but 
conflicts with  Liu et al. (2003). 

 
• This study has not considered whether the increase in green biomass, 

expressed as NDVI, has improved the land quality. However, 
increased vegetation cover would protect and bind the soil and, thus, 
decrease soil erosion potential and lead to increase in soil organic 
matter.  

 
• The indices developed here can be used as an input in early warning 

systems of land degradation or land improvement – once they are 
validated by field study. 
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6. OUTLOOK 

The objective of this study was to develop a methodology for assessment of 
land degradation and land improvement using AVHRR NDVI. The statistical 
approach was aimed at analysis of spatiotemporal trends in green biomass. 
The modelling approach was based on data modelling and statistical 
analysis aiming at managing data and determining the proper green 
biomass (NDVI) parameters - rather than analyzing long-term spatial 
changes. Both methods are useful for handling and displaying large 
datasets. 
 
Two methods that are yet to be fully explored are: 
 
1. ArisFlow which may have application to convert and analyse the GIMMS 

NDVI datasets (NDVI images, latitude image and longitude image) and 
clip the NDVI images of the study area from the processed GIMMS 
datasets (Eurasian continent).  

2. HANTS (Harmonic Analyses of NDVI Time-Series) algorithm, to smooth 
and reconstruct the GIMMS NDVI time-series and remove extreme 
values that could affect the generalization of processing NDVI time-
series.  

 
The next step in analysis of the remotely sensed data will be to stratify the 
study area according to soil and terrain (SOTER) units and land use, to 
calculate deviation of the NDVI indicators from local means. By comparing 
like with like, land degradation hotspots – and areas where degradation has 
been arrested or reversed - may be identified with greater confidence.  
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APPENDIX 1. LAND DEGRADATION ASSESSMENT CRITERIA 

Figure A below, used in the study by Liu et al (2003), covers part of Yulin 
Prefecture. It encompasses six counties: Dingbian, Jingbian, Hengshan, 
Yulin, Shenmu, Fugu with a total area of 17900 km2 (see Fig.1a). This area 
was divided into 49 sub-areas (mainly depending on administrative 
towns/townships and referring to Chinas_ID in the data modelling). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A:  Study area used by Liu et al. (2003) 

 
 
 
Table A: Indices and weights for factors used in the assessment of land degradation 
 

Indicators Severity level 

(%) I–severe II–high III–medium IV–low 

Weight 

 

Vegetation cover  <10 10–25 25–40 >40 0.40 

Drifting sand coverage >65 15–65 5–15 <5 0.25 

Annual desertification 
rate  

>5 2–5 1–2 <1 0.15 

Population pressure >50 30–50 0–30 –30–0 0.20 
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Table B:  Area of degraded land within the study area (104 ha) 
 

 Area studied Severity level 

  
I – severe II – high III – 

medium 
IV – low 

 Total area % Area % Area % Area % Area % 

 179.36 100 111.03  61.90 39.96  22.28 6.42  3.58 21.95  12.24 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. B: Spatial distribution of land degradation status (after Liu et al. 2003) 
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APPENDIX 2. ABBREVIATIONS 

 
AF ArisFlow 

CEVSA Carbon Exchange between Vegetation, Soil, and the Atmosphere 
CoV Coefficient of Variation 
FPAR Fraction of Photo-synthetically Active Radiation absorbed by the 

green canopy 
GIMMS The Global Inventory Modelling and Mapping Studies 
GLADA Global assessment of Land Degradation and improvement 
GLASOD Global Assessment of human-induced Soil Degradation 
HANTS Harmonic Analyses of NDVI Time-Series 
ISLSCP International Satellite Land Surface Climatology Project  
LAIg Green Leaf Area Index 
MS Access Microsoft Access 
NDVI Normalized Difference Vegetation Index 
NOAA AVHRR National Oceanic and Atmospheric Administration Advanced Very 

High Resolution Radiometer 
NPP Net Primary Productivity 
NPV Non-Photosynthetic Vegetation 
PV Photosynthetic Vegetation 
RUE Rain-Use efficiency 
RVC Rate of Vegetation Coverage 
RVI Ratio Vegetation Index 
SiB Simple Biosphere model 
SQL Structured Query Language 
UNCCD United Nations Convention to Combat Desertification 
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