

December 2002

TABLE OF CONTENTS

Page
Introduction 3
DEM uncertainty 3
Example of error in DEM 4
Software 4
Retrieving the DEM from the web 5
Retrieving and pre-treatment of the DEM in ArcView 6
Visualization end analysing techniques 8
The moving window 10
Slope 11
Relief 12
Effect of slope and relief on window size 13
Reclassifing the grids 14
Potential Drainage Density 15
Building the classtable 17
Classifications 18
Preparing the deafaultdem.apr for the automated process 18
The avenue script 18
Running the srcript 23
Short description of the script 23
Hierarchy of major landforms according SOTER manual 25
Discussion 26
Conclusion 26

Introduction

The SOTER(Global and National Soils and Terrain Digital Database) programme is a joint initiative of ISRIC (International Soil Reference and Information Centre), IUSS (International Union of Soil Sciences), FAO (Food and Agriculture Organization of the United Nations) and UNEP(United Nations Environment Programme).
The development of SOTER map units are based on topographical and lithological information. The first level of the development of these SOTER units is the 'terrain' unit.
This development is usually based on the "expert" interpretation that relies on ancillary data sources and first hand knowledge of the scientists involved in the project. This expert interpretation may be somewhat subjective. With the increasing capabilities of GIS technology and availability of digital spatial data, new approaches can be used for the characterization process.
Digital Elevation Models (DEM) make elevation data available for spatial analysis using GIS. Methods are presented how DEM-derived terrain classes can be made.

Dem uncertainty

DEMs can be produced from different sources such as:
> Aerial photography
$>$ Elevation contours from maps (termed the "contour-to-grid" process)
$>$ Satellite data
$>$ Laser altimetry
$>$ Radar (Interferometry)
Elevation data represented in digital format is called a Digital Elevation Model.
So DEMs are models of elevation.
Digital elevation data is often effected by errors due to random sampling error and excessive interpolation. The errors in DEMs propagates itself into error in all parameters derived from the DEM. The lack of knowledge about the reliability of the elevation measurement and its representation of the truth is referred to as uncertainty.
The exact nature and location of errors in elevation data cannot be precisely determined.
Several methodologies has been developed to simulate the effect of uncertainty on DEMs and the derived parameters such as slope, aspect, relief, etc.
(especially the Monte Carlo simulation is well known)
There are three types of error:

1. Blunders

Vertical errors associated with the data collection process and are generally identified and removed prior to release the data.
2. Systematic errors

Results of procedures used in the DEM generating process and can cause bias or artefacts in the final DEM product. When the cause is known, the systematic error can be eliminated or reduced.
3. Random errors

Remain in the data after blunders and systematic errors are removed. The users must be aware of the problems of uncertainty in DEM data.

Software

WinZip
ArcView 3.2(a)
ArcView Spatial Analyst Extension
ArcView 3D Analyst extension (Only for the visualization techniques)

Retrieving the DEM from the web

De GTOTO30 data set was developed by the U.S. Geological Survey's EROS Data Center.
The data set covers an area that ranges between 90 degrees north to 90 degrees south latitude an between 180 degrees west to 180 degrees east longitude.
The horizontal grid spacing is 30 arc-seconds (0.008333 degrees or approximately 1 kilometer.) The coordinate system is decimal degrees and longitude referenced to WGS84.
The vertical units represent elevation in meters above sealevel. (from -407 to 8752 meters)

Tile e020s10 (Zimbabwe included)
Download website:
http://edcdaac.usgs.gov/gtopo30/e020s 10.html

Oceans have been masked as "no data" and have a value of -9999
The download consists of a compressed e020s10.tar.gz file.
Decompress this file with WinZip into the desired folder.(f.i. the working directory of ArcView) This folder contains 8 folders with different extensions.
Rename the e020s10.dem to e020s10.bil (Band Interleaved by Line)
This file can be imported in Arcview.

Retrieving and manipulating the DEM in ArcView

Start Arcview and under File Extensions make sure the Spatial Analyst is loaded. Set the Working Directory under File to your folder.
Open a new View and under View Properties set the Map Units to meters and the Distance Units to kilometers.
Projections Properties Category:Projections of a Hemisphere Type:Lambert Equal-Area Azimuthal (Equatorial). Select Custum and type +20 for the Central Meridian and +5 for the Reference Latitude.

Add the e020s10.bil image file to the View as Image Data Source.
Make the theme active and display.
Convert the image to grid by choosing Theme Convert to Grid, put it in your folder and give it a name.
Because a grid cannot be projected in theView, it first must be projected in ArcInfo.
Statements:
projectcover inputfile outputfile
input
projection geographic
units dd
datum WGS84
spheroid WGS84
parameters
output
projection Lambert Azimuthal Equal Area
units meters
longitude center: 200000
latitude center : 050000
An alternative way to project the data, if you don't possess ArcInfo or ArcGis is to download the ArcView extension patch analist.avx from the web and put it in the directory lesrilav_gis30 \arcviewlext32.
Retrieve the projected gridfile into Arcview and give it the name Elevgrid.

Browse to the esrilesridatalworld folder and add the cntr98.shp to your View as a Feature Data Source. Make it active and display.
With "Select Feature" select Zimbabwe and choose Theme Create buffers.(Only for the selected features)
Now you are creating a buffer of 50 km only outside the polygons.
Theme Convert to Shapefile, put it in your folder and name it Zimbuf. Remove the entr98 shape file from the View.

Add your Zimbabwe reference (Esri) shape file to the projected View.
Make Zimbuf.shp active: Theme Convert to Grid. In the dialog box fill in for the -Output Grid Extent-: Same As Zimbuf.shp, for the -Output Grid Cell Size-: Same As Elevgrid OK
Accept the -Pick field for cell values-OK and add the theme to the View under the name Zimgrid.
The calculations are performed only for the desired area (Zimgrid) :
Analyses - Properties
-Analyses Extent- Same As Zimgrid
-Analysis Cell Size- Same As Elevgrid (1000m)
-Analyses Mask- No Mask Set
Manipulating the grid values in the Grid theme:
Analyses Map Calculator:
([Elevgrid] >=32768).con([Elevgrid]-65536,[Elevgrid])
In this formula 32768 represents 2^{15} and 65536 represents 2^{16}.
In the GTOPO30 DEM, 1 bit is used for the sign and 15 bits for the number.
This means 2^{15} is the maximum value that can be presented.
Arcview interprets the integer data as unsigned and uses all 16 bits for the number.
The values are in the range of $0-65536$.
The outputgrid is Mapcalculation 1
As earlier mentioned, GTOPO datafiles use -9999 for the ocean.
These values need to be changed to 0 .
Analyses Map Calculator:
([Map Calculation 1]=-9999).setnull([Map Calculation 1])
The outputgrid is Mapcalculation 2

Double Click on theme Map Calculations 2
-Classify- Number of classes: 5
Round values at: d
Make classes in the field "Value" of 0-200; 200-300; 300-400; 400-600; 600-1000; 1000-1500; 1500-3000; 3000-5000; >5000 Color Ramps: Terrain Elevation \#3
Save the legend as elevation.avl
With Map Calculation 2 active: Theme Properties Rename the Theme Name to Elevation
This elevation grid is the base for further calculations.

Visualization and analysing techniques

To create a Profile Graph:

View New Themes
In the New Theme dialog box fill choose for the Feature type "Line"; OK and accept the File Name Select the "Draw Line" button and draw a line in the map of the zone to be analysed.
With the line selected:
Theme Convert to 3D Shape file
In the dialogbox : Get Z values from: Surface; OK
Choose theme to use as surface: Elevation
Sample distance on grid: 1000; OK
Accept the file name and add the 3D shapefile as theme to the view.
Make the line somewhat thicker and make it black.
View Layout
Modify the layout and put the elevation map at the top.

Choose the "Profile Graph" button and draw a box beneath the elevation map.
To create Hillshade grid:
a. Surface Compute Hillshade

Or with the Map Calculator:
b. [Elevation].Hillshade $(315,45,2)$

Where 315 is the value for the azimuth ($0-360$); 45 the value for the altitude $(0-90)$
2 is a zfactor. Nil for no zfactor.
(a disadvantage of method a is that there is not a possibility for giving it a zfactor)
With the elevation theme active doubleclick this theme and in the Legend Editor open the Advanced button and choose Hillshade of Elevation under Brightness Theme and accept the Minimum/Maximum Cell Brightness (20/80); OK
Now the elevation theme gives a relief.
Hillshade

The Moving window

moving window
area that is affected by edge effects.
When the processing cell is in this area, part of the moving window has no data when calculations are performed on the input theme.
Therefore, the output values located in the gray area are based on incomplete information. This is the main reason to create a buffer around Zimbabwe to enlarge the analysis extent.
$\square \quad$ Processing cell

The moving window is used on raster data to perform neighborhood analyses such as mean, sum, minimun, maximum, median, range, standard deviation, minority, majority and variety.
Calculations are performed in the window (yellow) and in the new output grid this value is stored at the place of the processing cell. The window is then moved one cell position and calculations are repeated until the entire grid has been processed.

The moving window is a square window and has a dimension of 5×5 cells.
The window does not necessarily have to be square. It can be circular or defined as a rectangle A disadvantage of the square or rectangle window is that the diagonal neighborhood cells have not the same distance from the processing cell.
A circle seems more appropriate than a square because the boundary of a circle will always be of equal distance to the focal point. (the processing cell)

The distance from the centre of the red cell to the yellow one $=\sqrt{ } 2=1.41 \mathrm{~km}$ in a 1 km grid

Slope

Many different algorithms exist to compute slope from an elevation grid. Most systems pass a 3×3 moving window over a grid where the slope for the center cell is computed.
ArcView computes slope using a method called "Kings Case" that incorporates all surrounding eight cells where the slope for the centre cell E is computed from the surrounding cells
A, B, C, D, F, G, H and I (Burrough and McDonnell,1998; ESRI, 1998)

A	B	C
D	E	F
G	H	I

where $\left(\frac{\Delta z}{\Delta x}\right)^{2}$ and $\left(\frac{\Delta z}{\Delta y}\right)^{2}$ are computed from the 3×3 matrix as follows:
$\left(\frac{\Delta z}{\Delta x}\right)^{2}=[((\mathrm{A}+2 \mathrm{D}+\mathrm{G})-(\mathrm{C}+2 \mathrm{~F}+\mathrm{I})):(8 * x \text { grid spacing })]^{2}$
$\left(\frac{\Delta z}{\Delta y}\right)^{2}=[((\mathrm{A}+2 \mathrm{~B}+\mathrm{C})-(\mathrm{G}+2 \mathrm{H}+\mathrm{I})):(8 * y \text { grid spacing })]^{2}$

To derive slope:
Analyses Map Calculator:
[Elevation].Slope(2.5,TRUE)
Evaluate
The factor 2.5 has been chosen because the slope in a 1 km DEM is in reality 2.5 times of this value. One has approved this by comparing the slope values with higher resolution DEM's.

Double click the theme and make 4 classes of respectively 0-2; 2-8; 8-30 and $>30 \%$ slope Round values at: did
Rename the theme name to "slope" under Theme Properties.
Analyses Map Calculator:
Neighborhood statistics: Statistic: Mean Neighborhood: Rectangle Width: 3 Height: 3 Units :Cell
Neighborhood statistics: Statistic: Mean Neighborhood: Rectangle Width: 5 Height: 5 Units :Cell
Neighborhood statistics: Statistic: Mean Neighborhood: Rectangle Width: 7 Height: 7 Units :Cell

Relief

The 5×5 moving window is used to derive the maximum and the minimum elevations.
The Relief = Elevation MAX - Elevation ${ }_{\text {MIN }}$
There are two ways to calculate the index:

1. Analysis Map Calculator (this example only uses the 5×5 moving window)
([Elevation].Focalstats(\#Grid_statype_MAX,NbrHood.MakeRectangle(5,5,false)-
([Elevation].Focalstats(\#Grid_statype_MIN,NbrHood.MakeRectangle(5,5,false)
Evaluate
The mean of the Relief:
([Reliefgrid].Focalstats(\#Grid_statype_MEAN,NbrHood.MakeRectangle(5,5,false)

Evaluate

The other way is straight from the Analysis menu:
2. With the elevation theme active:

Neighborhood statistiscs: Statistic: MAX Neighborhood: Rectangle Width: 3 Height: 3 Units :Cell
Neighborhood statistiscs: Statistic: MAX Neighborhood: Rectangle Width: 5 Height: 5 Units :Cell Neighborhood statistiscs: Statistic: MAX Neighborhood: Rectangle Width: 7 Height: 7 Units :Cell Respectively:
Neighborhood statistiscs: Statistic: MAX Neighborhood: Rectangle Width: 3 Height: 3 Units :Cell
Neighborhood statistiscs: Statistic: MAX Neighborhood: Rectangle Width: 5 Height: 5 Units :Cell Neighborhood statistiscs: Statistic: MAX Neighborhood: Rectangle Width: 7 Height: 7 Units :Cell

Map Calculator:
([NbrMax of Elevation] - [NbrMin of Elevation])
Evaluate
The mean of the relief:
Analyses Map Calculator:
Neighborhood statistics: Statistic: Mean Neighborhood: Rectangle Width: 3 Height: 3 Units :Cell
Neighborhood statistics: Statistic: Mean Neighborhood: Rectangle Width: 5 Height: 5 Units :Cell
Neighborhood statistics: Statistic: Mean Neighborhood: Rectangle Width: 7 Height: 7 Units :Cell

Rename the in method 1 or method 2 obtained resulting grid to "Relief "
Double click the theme and make 7 classes of $0-15 ; 15-30 ; 30-50 ; 50-100 ; 100-300$ and >300 Choose a dichromatic Color Ramp.

Effect of slope and relief on window size

3

SIZE OF THE MOVING WINDOW

Effects of slope and relief on window size of resp. $3 \times 3,5 \times 5$ and 7×7

Reclassifying the grids

With the elevation resp. slope and relief theme active:
Analyses Reclassify
Classify: Number of classes: 6(elevation) resp. 4(slope) and 6(relief); Round values at : d; OK Fill in the Old Values and the New Values (see figure)

Potential Drainage Density

To obtain the Potential Drainage Density grid the following grids are produced:
From the Elevgrid resp.: - FlowDirection $\$ FlowAccumalation $>$ Stream $>$ Drain $>$ PDD

Analyses Map Calculator:

[Elevation].Flowdirection(FALSE)
If TRUE, all cells of the surface will flow away from the surface.
If FALSE then flow is calculated for cells with the edge being slightly lower than the cell. evaluate
aGrid.FlowDirection request calculates the direction of flow out of each cell into one of its eight neighbors. The output is an integer Grid.
The cell flows to the cell with the lowest elevation.
The values for each direction from the center are:

32	64	128	$X=$ the processing cell
16	区	1	
8	4	2	

78	72	69	71	58
74	67	56	49	46
69	53	44	37	38
64	58	55	22	16
74	54	34	38	11

ElevGrid (with elevation values) FlowGrid (with direction codes)

Flow Accumulation:

Analyses Map Calculator:
[Flowdirection].Flowaccumulation(NIL)
If NIL, a weight of 1 is used for each cell.
Instead of NIL you can use a grid that assigns a weight to each cell
aGrid.FlowAccumulation request creates a Grid of accumulated flow to each cell, by accumulating the weight for all cells that flow into each downslope cell.

For understanding the procedure ArcView executes:
With the flowdirection codes in mind add the cells that flow into the other cells for the resulting AccumGrid.

2	2	2	2	4
2	2	2	4	8
1	1	2	2	4
128	2	2	1	4
1	1	128	1	64

FlowGrid

$\Rightarrow \quad$| 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 | 2 |
| 0 | 3 | 6 | 4 | 0 |
| 0 | 0 | 0 | 8 | 7 |
| 0 | 1 | 3 | 1 | 10 |

AcummGrid

StreamGrid $=($ flowAcc <100. AsGrid).SetNull(1.AsGrid)
All cells that have more than 100 cells flowing into them are assigned 1(the pixels which had more than $100 \mathrm{~km}^{2}$ catchments area) all other cells are assigned No Data.

DrainGrid=StreamGrid.Focalstats(\#Grid_statype_sum,Nbrhood.MakeRectangle(5,5,false),false)
Summerizes the cells of the StreamGrid in the moving window.
The Focalsum function is used in the moving window.
This sum means a simple count of the pixels which represent drainage ways, because these pixels have a value of 1 . All other pixels value 0 .
The resulting value of the pixels refer to the drainage ways and can have a maximum of 25 (in a moving window of 5×5).

The resulting " Potential Drainage Density" Grid file:
PDDGrid=DrainGrid.IsNull.con(0.AsGrid,DrainGrid)
"Nodata" will be transferred to 0
The term "drainage density"is not identical to the one used by the geographers and geomorphologists. It is not based on the real drainage network. It is derived from a DEM.
It does not take into consideration the loss of surface water due to infiltration into the soil.
So the PDD is always >= the real density.
With the pdd theme active:
Analyses - Reclassify
Classify: Number of classes:. 4; Round values at : d; OK

Combigrid

Analyses Map Calculator:
([Reclass of Slope $]+[$ Reclass of Elevation $]+[$ Reclass of Relief $]+[$ Reclass of PDD $])$
The resulting new grid (combigrid) has combinations with unique values for the combined classes.
With the combigrid theme active:
Theme - Convert to Shapefile
New Shapefile -- Open Theme Table - Summarize and save as "classtable"

Delete the temporary shapefile.

Building the "Classtable"

Open the classtable in ArcView and start editing.
Add fields (Edit Add fields) resp. "elevation", "slope", "relief", "pdd" and "class" as string fields. Fill in the classes of resp. elevation, slope, relief and pdd according the unique code It is easy now to query for the several combinations of these parameters in order to analyse and finally to fill in the (soter)classification in the "class"field.
In the script this table will join to the attribute grid file, because this table and the attribute table as well have the same unique gridcode field.

Join the table to the combigrid and in the Legend Editor of this theme make a legend on this "class" field and save this legend in your working directory as combi.avl
In the automated process this legend is automatically added to the "combigrid

Classifications

Classifications used :

Elevation		Slope		Relief		PDD	
meter	code	$\%$	code	meter	code	pixel	code
$0-200 \mathrm{~m}$	10000	$0-2$	1000	$0-15$	100	0	1
$200-400 \mathrm{~m}$	20000	$2-8$	2000	$15-30$	200	$1-5$	2
$300-400 \mathrm{~m}$	30000	$8-30$	3000	$30-50$	300	$6-15$	3
$400-600 \mathrm{~m}$	40000	>30	4000	$50-100$	400	$16-25$	4
$600-1000 \mathrm{~m}$	50000			$100-300$	500		
$1000-1500 \mathrm{~m}$	60000			>300	600		
$1500-3000 \mathrm{~m}$	70000						
$>3000 \mathrm{~m}$	80000						

The automated process

Preparing the defaultdem:

Start Arcview and under File Extensions make sure the Spatial Analyst is loaded. Set the Working Directory under File to the desired directory.
Open a new View and under View Properties set the Map Units to meters and the Distance Units to kilometers.
Projections Properties Category:Projections of a Hemisphere Type:Lambert Equal-Area Azimuthal (Equatorial). Select Custum and type +20 for the Central Meridian and +5 for the Reference Latitude.
In the TOC doubleclick on script and rename the script 1 to DEM.
Paste the avenue text file in this window and compile it.
With the View active doubleclick on the tool or button bar.
In the customize dialog window set the type to View and the Category to buttons.
Click on NEW; doubleclick on "click" and choose DEM from the Script Manager.
Doubleclick on "Icon" and select an icon in the Icon Manager.
Save this project file as defaultdem.apr
This projectfile is the base for your DEM cooking.
Prior to the DEM cooking put the legend files and the combiclass.dbf in the working directory.
Set the elevgrid theme active in the active window.

The Avenue script:

' Add several theme's (parameters derived from elevationgrid)
' and combine it to one grid with the predefined combination classes. J. Huting, dec. 2002

' This script executes with from the DEM derived elevgrid file as inputfile.
' The particular legends must be predefined as elevation.avl; slope.avl; relief.avl; pdd.avl ' and combi.avl. and the classcombi.dbf table as well. They have to be placed in the working directory.
' The View window must be the active document with the elevgrid as the active theme.
'set working directory
aFilename="d:\dem".AsFilename
av.GetProject.SetWorkDir(aFilename)

```
                            aFilename.SetCWD
'select grid theme
    theProject=Av.GetProject
    theView = Av.GetActiveDoc
'check to make sure that there is a theme selected.
    if (theView.GetActiveThemes.Count=0) then
    Msgbox.Info("Must have a Grid theme selected","")
    exit
    end
'get the grid
    theGridTheme =theView.GetActiveThemes.Get(0)
    elevGrid = theGridTheme.GetGrid
'real elevation values
    elevatigrid=(elevGrid>=32768.AsGrid).con
    (elevGrid-65536.AsGrid,elevGrid)
'eventueel nodata eruit
    elevationgrid=(elevatigrid=-9999.AsGrid).setnull(elevatigrid)
'make elevationgrid
    elevationGrid.Rename("Elevation".AsFileName)
    elevation=Gtheme.make(elevationGrid)
    theView.AddTheme(elevation)
'calculate slope
    slopeAGrid=elevgrid.Slope(2.5,TRUE)
'the mean value of the slope in the moving window
slopeGrid=slopeAGrid.Focalstats(#Grid_statype_mean,Nbrhood.MakeRectangle(5,5,false),false)
'make slope theme in the View
    slopeGrid.Rename("Slope".AsFileName)
    slope=Gtheme.make(slopeGrid)
    theView.AddTheme(Slope)
'calculate Relief
MAXGrid=elevationGrid.Focalstats(#Grid_statype_max,Nbrhood.MakeRectangle(5,5,false),false)
MINGrid=elevationGrid.Focalstats(#Grid_statype_min,Nbrhood.MakeRectangle(5,5,false),false)
reliefAGrid=MAXGrid-MINGrid
reliefGrid=reliefAGrid.Focalstats(#Grid_statype_mean,Nbrhood.MakeRectangle(5,5,false),false)
'make relieftheme in the View
    ReliefGrid.Rename("Relief".asFileName)
    Relief=Gtheme.make(ReliefGrid)
    theView.AddTheme(Relief)
'calculate flow direction
    flowDirGrid = elevationGrid.FlowDirection(FALSE)
'make FlowDir Theme (not added to the View)
    flowDirGrid.Rename("FlowDir".asFileName)
    flow=GTheme.Make(flowDirGrid)
'theView.AddTheme(flow)
'calculate flow accumulation
    flowAccGrid = flowDirGrid.FlowAccumulation(NIL)
'make FlowCum Theme (not added to the View)
    flowAccGrid.Rename("FlowCum".asFileName)
    flow=GTheme.Make(flowAccGrid)
'theView.AddTheme(Flow)
```

```
extract streams from flow accumulation
    streamGrid = (flowAccGrid<100.AsGrid).SetNull(1.AsGrid)
'summerize the cells of the streamgrid in the moving window
DrainGrid=streamgrid.Focalstats(#Grid_statype_sum,Nbrhood.MakeRectangle(5,5,false),false)
'the Nodata will be transferred to the value 0
    PDDGrid=DrainGrid.IsNull.con(0.AsGrid,DrainGrid)
'make PDD Theme in the View
    PDDGrid.Rename("PDD".asFileName)
    PDD=Gtheme.Make(PDDGrid)
    theView.AddTheme(PDD)
'OPTIONAL
'delineate stream links
'streamLinkGrid = streamGrid.StreamLink(flowDirGrid)
'delineate watersheds for each stream link
'watershedGrid = flowDirGrid.Watershed(streamLinkGrid)
'make Watershd Theme in View
'watershedGrid.Rename("Watershd".AsFileName)
'watershed=GTheme.make(watershedGrid)
'theView.AddTheme(watershed)
'SET THE LEGENDS
'to identify
    theView=av.GetActiveDoc
    for each T in theView.GetActiveThemes
    theView = av.GetActiveDoc
    for each t in theView.GetThemes
    if (t.IsVisible.not) then t.SetVisible(FALSE)
    end
    theSourceName=T.GetSrcName
    theFileName=theSourceName.GetFileName
    theThemeLegend=T.GetLegend
    theFileString=theFileName.GetFullName
    theFileStringLength=theFileString.Count
'Determine the name of the legend file
    if(theFileString.Middle((theFileStringLength-4),1)="")then
    theLegendString=(theFileString.Left(theFileStringLength-4))+".avl"
    theLegendFile=theLegendString.AsFileName
    else
    theLegendString=theFileString+".avl"
    theLegendFile=theLegendString.AsFileName
    end
'Load the legend
    if(File.Exists(theLegendFile))then
    theThemeLegend.Load(theLegendFile,#LEGEND_LOADTYPE_ALL)
    T.InvalidateLegend
    else
    MsgBox.Info("Sorry"++theFileString++"has no locallegend","Missing avl....")
    end end end
'making the reclassify gridthemes (not added to the View)
    theView=av.GetActiveDoc
```

```
    theTheme=elevation
    theLegend=theTheme.GetLegend
    theGrid=theTheme.GetGrid
    theFldName=theLegend.GetFieldNames.Get(theLegend.GetFieldNames.Count-1)
    aClassList=theLegend.GetClassifications
    theClassList=aClassList.DeepClone
    count=10000
    for each c in theClassList
    c.SetLabel(count.AsString)
    count=count+10000
    end
    ElevationGrid = theGrid.ReclassByClassList(theFldName,theClassList,FALSE)
    ElevationGrid.Rename("Recelev".AsFileName)
    Recelev=Gtheme.Make(ElevationGrid)
'theView.AddTheme(Recelev)
    theTheme=slope
    theLegend=theTheme.GetLegend
    theGrid=theTheme.GetGrid
    theFldName=theLegend.GetFieldNames.Get(theLegend.GetFieldNames.Count-1)
    aClassList=theLegend.GetClassifications
    theClassList=aClassList.DeepClone
    count=1000
    for each c in theClassList
    c.SetLabel(count.AsString)
    count=count+1000
    end
    SlopeGrid = theGrid.ReclassByClassList(theFldName,theClassList,FALSE)
    SlopeGrid.Rename("Recslope".AsFileName)
    Recslope=Gtheme.Make(SlopeGrid)
'theView.AddTheme(Recslope)
    theTheme=Relief
    theLegend=theTheme.GetLegend
    theGrid=theTheme.GetGrid
    theFldName=theLegend.GetFieldNames.Get(theLegend.GetFieldNames.Count-1)
    aClassList=theLegend.GetClassifications
    theClassList=aClassList.DeepClone
    count=100
    for each c in theClassList
    c.SetLabel(count.AsString)
    count=count+100
    end
    ReliefGrid=theGrid.ReclassByClassList(theFldName,theClassList,FALSE)
    ReliefGrid.Rename("Recrelief".AsFileName)
    Recrelief=Gtheme.Make(ReliefGrid)
'theView.AddTheme(Recrelief)
    theTheme=PDD
    theLegend=theTheme.GetLegend
    theGrid=theTheme.GetGrid
    theFldName=theLegend.GetFieldNames.Get(theLegend.GetFieldNames.Count-1)
    aClassList=theLegend.GetClassifications
```

```
    theClassList=aClassList.DeepClone
    count=1
    for each c in theClassList
    c.SetLabel(count.AsString)
    count=count+1
    end
    PDDGrid = theGrid.ReclassByClassList(theFldName,theClassList,FALSE)
    PDDGrid.Rename("Recpdd".AsFileName)
    Recpdd==Gtheme.Make(PDDGrid)
'theView.AddTheme(Recpdd)
'combination reclass grids van elevation, slope, relief and pdd
    combiGrid=ElevationGrid+ReliefGrid+SlopeGrid+PDDGrid
'make combi theme in View
    CombiGrid.Rename("Combi".asFileName)
    Combi=Gtheme.Make(CombiGrid)
    theView.AddTheme(Combi)
'retrieving the classcombi.dbf from the working directory
    theView=theProject.FindDoc("View1")
    theTheme=theView.FindTheme("combi")
    patterns = {"*.dbf", "arcdr9", "*.txt"}
    labels = {"dBASE (*.dbf)", "INFO", "Delimited Text (*.txt)"}
    files = FileDialog.ReturnFiles(patterns, labels, "Add Table", 0)
    for each f in files
    v = VTab.Make(f, FALSE, FALSE)
    if (v.HasError) then
    if (v.HasLockError) then
    MsgBox.Error("Unable to acquire Read Lock for file " + f.GetBaseName, "")
    else
    MsgBox.Error("The file '" + f.GetBaseName + "' is not valid.", "")
    end
    else
    gui = av.GetProject.GetSelectedGUI
    if (gui.GetType <> "Table") then
    GUIName = "Table"
    else
    GUIName = gui.GetName
    end
    t = Table.MakeWithGUI(v, GUIName)
    t.SetName(v.GetName)
    t.GetWin.Open
    end
    end
'joining the classcombi table to the "combi" attribute table
    theView=theProject.FindDoc("View1"
    theGridTheme=theView.FindTheme("elevgrid")
    elevgrid=theGridTheme.GetGrid
    theGridTheme.SetActive(FALSE)
    theGridTheme.SetVisible(FALSE)
    theGridTheme=theView.FindTheme("combi")
    combi = theGridTheme.GetGrid
```

```
    theGridTheme.SetActive(TRUE)
    theGridTheme.SetVisible(TRUE)
    Tab2=av.Getproject.FindDoc("classcombi.dbf")
    Tab2 = av.GetActiveDoc
    VTab2=Tab2.GetVTab
    field2=VTab2.FindField("Gridcode")
    theView=av.GetProject.FindDoc("Combi")
    combiFTab=combi.getVTab
    field1=combiFTab.FindField("Value")
    CombiFTab.Join(field1,VTab2,field2)
'making the theme the first in the TOC
    theView=theProject.FindDoc("View1"
    theThemeList=theView.GetThemes
    theThemeList.Shuffle(theThemeList.Get(0),(theThemeList.Count))
    theThemeList.Get(theThemeList.Count-1).SetActive(TRUE)
    theView.InvalidateTOC(nil)
    theView.GetDisplay.Invalidate(true)
'retrieving the legend of the combi grid from the working directory
    theGridTheme =theView.GetActiveThemes.Get(0)
    combi = theGridTheme.GetGrid
    theGridTheme.setactive(TRUE)
    theTheme = theView.GetActiveThemes.Get(0)
    theLegendFile="combi.avl".AsFileName
    theThemeLegend = theTheme.GetLegend
    theThemeLegend.Load(theLegendFile,#LEGEND_LOADTYPE_ALL)
    TheGridTheme.InvalidateLegend
```


Optional:

To prevent the projectfile to be saved as demfault.apr you can append the system script "Project.Save as" (you can find this script in the scripteditor under Script Load System Script) to the DEM script.

Running the script:

Open the defaultdem.apr in ArcView, retrieve your elevgrid and make it active. Click on the DEM button.

Short description of the script:

In the View the script is generating respectively:

1. Elevation The real elevation values are produced No data is removed
2. Slope (In \%, multiplied with factor 2.5)

INRA (Institute National de la Recherche Agronomique France) has compared the \% slope in a 1 km DEM with \% slope in high resolution DEMs and found this empirical factor 2.5. Probably this factor is not the same as for Zimbabwe, but due to the lack of high resolution DEM's for Zimbabwe we adopted this one.
The mean of the result is calculated in a 5×5 window
3. Relief Maximum minus Minimum elevation in a 5×5 moving window. The mean of the result is calculated in the moving window.
4. PDD
a. Flowdirection
b. Flowaccumulation
c. Streamgrid
d. Draingrid
e FocalSUM in a 5×5 moving window
f. PDD $=$ The draingrid, but "Nodata" is set to 0

5. Legends

The legends are retrieved from the working directory.
(The legend name is the same as the theme name)
6. Reclassify

The script generates the reclassify grids for the 4 themes.

7. Combigrid

The grids are combined to 1 grid: the combigrid

8. Combiclass table

The combiclass table is retrieved from the working directory and joined to the combigrid_attribute table.

9. Legend combigrid

Set the combigrid active and visible as the first theme in the Table of Contents retrievs the legend for the combigrid.

10. Save the project

The script asks for a name.

Hierarchy of major landforms according Soter manual

		\% slope	relief
\mathbf{L} level land	LP plain	<8	$<100 \mathrm{~m} / \mathrm{km}$
	LL plateau	<8	$<100 \mathrm{~m} / \mathrm{km}$
	LD depression	<8	$<100 \mathrm{~m} / \mathrm{km}$
	LF low-gradient footslope	<8	$<100 \mathrm{~m} / \mathrm{km}$
	LV valley floor	<8	$<100 \mathrm{~m} / \mathrm{km}$
S sloping land	SM medium-gradient mountain	15-30	$>300 \mathrm{~m} / \mathrm{km}$
	SH medium-gradient hill	8-30	$>50 \mathrm{~m} / \mathrm{km}$
	SE medium-gradient esc.zone	15-30	$<300 \mathrm{~m} / \mathrm{km}$
	SR ridges	8-30	$>50 \mathrm{~m} / \mathrm{km}$
	SU mountainous highland	8-30	$>300 \mathrm{~m} / \mathrm{km}$
	SP dissected plain	8-30	$<50 \mathrm{~m} / \mathrm{km}$
T steep land	TM high-gradient mountain	>30	$>300 \mathrm{~m} / \mathrm{km}$
	TH high-gradient hill	>30	$<300 \mathrm{~m} / \mathrm{km}$
	TE high-gradient esc. zone	>30	$>300 \mathrm{~m} / \mathrm{km}$
	TV high gradient valleys	>30	$>300 \mathrm{~m} / \mathrm{km}$
C land with composite			
landforms	CV valley	>8	variable
	CL narrow plateau	>8	variable
	CD major depression	>8	variable

Discussion

A basic understanding of the terrain is necessary in order to adjust the moving window size. This is accomplished by examining the pre-existing SOTER "expert" landform map. The DEM resolution also plays a roll in determining the window size. In this study case a DEM with a 1 km resolution and window size of 5×5 may be appropriate for the analysis. It is important to note that the window size will affect the slope and especially the relief component. The resulting map contain many classes, which can be grouped based on topographic similarities. Generalizing the classes can be used to derive general terrain patterns.
Viewing these patterns can aid in deciding a further breakdown in classes if necessary.
The user must understand the characteristics of the DEM and the size of the terrain features in order to select window size and to make decisions for generalizing the classes.

Comparing the landform "expert" map(see map 1) with the resulting combigrid map (see map 2) you can notice the unclassified mountainous area in the south on map 1.
Also comparing the other classified terrain units on map 1 with map 2 you can notice the differences. Looking at map 3 you can clearly see the part of the depression of Botswana in Zimbabwe's area.

Conclusion

A 1 km resolution DEM has been used to derive terrain classes for the development of SOTER map units. The procedure here is based on measurements which are repeatable.
In fact the application can be used on any part of the world.
GTOPO30 DEMs are available for free and can be processed for all these areas on the Earth. Terrain classes can be obtained using the elevation and derivatives as presented here, but some (sub) classes, especially in the level land cannot be distinguished as those defined in the SOTER procedures manual.
However, it is strongly recommended to use higher resolution DEMs.
Higher resolution DEM data will be increasingly available world wide.
In February, 2000 there was a U.S. Shuttle Radar Topographic mission that collected data for 80% of the Earth's land surface using radar interferometry. These data with a 30 m resolution will be available in the next 2 or 3 years. Future initiatives need to examine these DEM data and to derive or enhance terrain classes for the SOTER database.

Zimbabwe

Landforms ("expert")

Slope 8-30\%

Slope $>30 \%$

Slope thresholds, based on a GTOPO30 1 km resolution DEM and a window size of 5×5 in combination with the elevation classes.

Slope 0.8\%
PDD 6-15 pixels

PDD thresholds, based on a GTOPO30 1 km resolution DEM and a window size of 5×5 in combination with a slope threshold of $0-8 \%$ and the elevation classes.

Relief $100-300 \mathrm{~m}$

Relief $>300 \mathrm{~m}$

Relief thresholds, based on a GTOPO30 1 km resolution DEM and a window size of 5×5 in combination with the elevation classes.

Elevation with brightness of Hillshade theme

A

0	100	200 Km

Combination of elevation, drainage density (top layer is Zimbabwe vector theme)

Elevation (m)

0-200
200-400
400-600
600-800
800-1000
1000-1200
1200-1400
1400-1600
1600-1800
1800-2000
2000-3000
No Data

Drainage Density (pixels)

Combi grid with brightness of hillshade of combigrid

DEM classification
 Zimbabwe

Elevation (m) Slope (\%) Relief (m) PDD (pixel) Classification Legend

