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If we know the variogram of a random variable then we can compute the prediction error variances (kriging
variances) for kriged estimates of the variable at unsampled sites from sampling grids of different design and
density. In this way the kriging variance is a useful pre-survey measure of the quality of statistical predictions,
which can be used to design sampling schemes to achieve target quality requirements at minimal cost. How-
ever, many soil properties are lognormally distributed, and must be transformed to logarithms before geos-
tatistical analysis. The predicted values on the log scale are then back-transformed. It is possible to compute
the prediction error variance for a prediction by this lognormal kriging procedure. However, it does not de-
pend only on the variogram of the variable and the sampling configuration, but also on the conditional mean
of the prediction. We therefore cannot use the kriging variance directly as a pre-survey measure of quality for
geostatistical surveys of lognormal variables. In this paper we present an alternative. First we show how the
limits of a prediction interval for a variable predicted by lognormal kriging can be expressed as dimensionless
quantities, proportions of the unknownmedian of the conditional distribution. This scaled prediction interval
can be used as a presurvey quality measure since it depends only on the sampling configuration and the var-
iogram of the log-transformed variable. Second, we show how a similar scaled prediction interval can be
computed for the median value of a lognormal variable across a block, in the case of block kriging. This ap-
proach is then illustrated using variograms of lognormally distributed data on concentration of elements in
the soils of a part of eastern England.

© 2012 Natural Environment Research Council. Published by Elsevier B.V. All rights reserved.
1. Introduction

There is a growing awareness of the need to manage the soil sus-
tainably, and as a result regulatory frameworks have been developed
to ensure that soil quality is maintained (e.g. European Commission,
2006). As Bone et al. (2010) observe, the assessment of soil quality
is challenging, potentially costly and prone to uncertainty because
of the variability of soil material. It is therefore important that sam-
pling schemes for soil assessment are carefully designed. De Gruijter
et al. (2006) discuss how sampling can be planned so that questions
about the soil are answered satisfactorily and efficiently. It is neces-
sary to make best use of costly field and laboratory effort, and the re-
sults from sampling and analysis must be sufficiently precise to meet
the end-user's requirements. De Gruijter et al. (2006) emphasize
the importance of clearly identifying what these requirements are
before the survey is planned. For example, the target quantity that
we want to know might be the mean value of some variable across
a region of interest, and an estimate of this is usually best achieved
by an appropriately designed probability sample which entails
randomization. If, alternatively, the user wants a set of local
ment Research Council. Published b
predictions (perhaps presented as a contour map) then this requires
a more or less regular array of sample locations, and appropriate
model-based statistical analyses. Having identified the nature of the
question that sampling is to answer, we must also have some idea
of how reliable the answer must be. This can be expressed by what
de Gruijter et al. (2006) call quality measures.

A quality measure is a measure of the precision of an estimate
from sample data. Once we have some data we can compute esti-
mates of target quantities from them (e.g. means), and associated
quality measures (e.g. confidence intervals). These are post-survey
quality measures, which tell us, and users of the information, how
well we have done. What we require for planning sampling are pre-
survey quality measures, which tell us how well we can expect to
do given a certain survey effort. Usually we can only approximate
pre-survey quality measures (they may depend on estimates of
values such as the variance of the target quantity in the population
of interest that we can only approximate before sampling). Such
pre-survey quality measures may be the expected width of the confi-
dence interval for a target quantity, or the statistical power with
which we can detect a change in the soil (Brus and Noij, 2008; de
Gruijter et al., 2006; Lark, 2009).

Ideally we identify a quality measure that is appropriate for a par-
ticular sampling problem, and which can be approximated, pre-
survey, from available information. We also ask the data user to
y Elsevier B.V. All rights reserved.
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specify values of the quality measure that are acceptable for their pur-
poses. It should then be possible to plan a sampling campaign that
will return information of suitable quality at acceptable minimal
cost, or to show the user that this is not possible, and that it is neces-
sary either to increase the budget to permit the collection of more
samples or to accept that less precise estimates will be possible
than originally hoped.

The kriging methods introduced to soil science by Burgess and
Webster (1980), and further developments of these, are routinely
used to produce local predictions of soil properties when such predic-
tions are the required outcome from a soil inventory. Geostatistical
methods are model-based in that they invoke an underlying random
variable that is held to be realized in observed data, rather than
depending on randomized sampling. The spatial dependence of this
random variable is modelled by the variogram function. Local predic-
tions are obtained as weighted averages of neighbouring observations
of the variable, the weights being selected to minimize the expected
squared error of the predictions. This quantity, called the kriging var-
iance, is reported along with the prediction. It is a useful quality mea-
sure. Note that local predictions by point kriging are made on the
original quasi-point support of the data — our observations are
made on soil cores or similar specimens that are of very small dimen-
sions by comparison to the region under study. As an alternative to
point kriging we may estimate the mean value of the target variable
over some region or block, which may be a regular rectilinear panel
or an irregular region such as a field or similar management unit.
This is called block kriging.

Geostatistical prediction by kriging is based on a random statisti-
cal model of the variable of interest which is inferred from data. Our
data are treated as a realization of the underlying random model
(de Gruijter et al., 2006). In kriging our target quantity is a point or
block value specific to the realization, the block value is the spatial
mean of the variable over the block's extent. The measures of uncer-
tainty (kriging variances) are derived over the model distribution
conditional on the observations.

Given the variogram function, the kriging variance (point or block
kriging) for some variable at a particular location depends only on the
configuration of sample sites. This makes the kriging variance a useful
pre-survey quality measure. If we have an estimate of the variogram,
perhaps from a survey of a neighbouring region, we can identify a
sample network which ensures that the kriging variances of local pre-
dictions fall within an acceptable range. This was demonstrated by
McBratney et al. (1981), and their approach has been applied to the
design of soil surveys (Di et al., 1989; van Groenigen et al., 1999) in-
cluding cases where the kriging prediction includes an external drift
modelled by covariates such as remote sensor data (Brus and
Heuvelink, 2007). More recently this work has been developed for
the optimization of spatial surveys including both variogram estima-
tion and prediction by kriging (Marchant and Lark, 2006, 2007; Zhu
and Stein, 2006). Note that sound inference from the variogram re-
quires that it has been estimated reliably. When data are prone to in-
cluding outliers then robust variogram estimators may be needed,
and the resulting model must be validated (Lark, 2000).

It is commonly found that soil and other geochemical variables do
not appear to be normally distributed (Allègre and Lewin, 1995;
White et al., 1987). This is best judged by exploratory statistics,
such as the coefficient of skewness, and histograms of the data
(Webster and Oliver, 2007). In these circumstances the data should
be transformed to a scale of measurement on which an underlying
normally distributed random variable can plausibly be assumed.
Geostatistical predictions can be obtained on this new scale and
then back-transformed to the scale of measurement. This is called
trans-Gaussian kriging (Cressie, 1993). A common case is lognormal
kriging, when the data are transformed to logarithms. Let Y be the
normal variable obtained by transformation of our original variable,
Z, to natural logarithms. The ordinary point kriging of Y at location
x0 is the conditional mean of the variable Y(x0), conditional on the ob-
served values used for prediction, the random model (variogram) the
assumption of a fixed but unknown local mean of Y and the assump-
tion that Y is a normal random variable (Stein, 1999). The conditional
distribution of Y(x0) has variance σK

2(x0), the kriging variance. How-
ever, for scientific or practical purposes we generally require predic-
tions on the original scale. The ordinary point kriging prediction of Y
is back-transformed to Z, the corresponding variable on the original
scale of measurement by

~Z x0ð Þ ¼ exp ~Y x0ð Þ þ σ2
K x0ð Þ
2

−ψ x0ð Þ
( )

; ð1Þ

where ψ(x0) is a Lagrange multiplier obtained in the solution of the
kriging equations and ~Z and ~Y denote the kriging predictions of the
respective random variables. The prediction error variance on the
original scale of measurement can be written as

exp 2μY þ σ2
K x0ð Þ

n oh i
�

exp σ2
K x0ð Þ

n o
þ exp Var ~Y x0ð Þ

� �n o
−2exp Cov Y x0ð Þ; ~Y x0ð Þ

� �n oh i
;

ð2Þ

where μY is the mean of Y and Var(⋅) and Cov(⋅, ⋅) denote, respective-
ly the variance and covariance of the terms in brackets (Cressie,
1993). The key property of this latter expression is that the variance
of the prediction depends on the mean of the variable. For this reason,
unlike ordinary point or block kriging on the untransformed data, we
cannot express the kriging variance as a quality measure dependent
only on the variogram and the sampling design. In the log-normal
case the kriging variance is therefore only useful as a post-survey
quality measure, and cannot be used to select among different sam-
pling designs before we have sampled a particular region.

The aim of this paper is to explore and demonstrate alternative
quality measures that could be used for pre-survey planning of sam-
pling for lognormally distributed variables. Some approaches are pro-
posed for ordinary point and block kriging, and then illustrated with
soil data from a baseline geochemical survey of part of eastern
England.

2. Theory

2.1. The proposed quality measures: standardized prediction intervals
and quantiles

As seen above, the kriging variance of a normally distributed ran-
dom variable is a useful pre-survey quality measure for a sampling
scheme because it depends only on the variogram of the variable
and the sampling configuration. By contrast the mean square predic-
tion error (kriging variance) at location x0 on the untransformed scale
depends, inter alia on E[Z(x0)] conditional on the observations, so will
not serve as a pre-survey quality measure. In this paper we propose
quality measures based on prediction intervals rather than variances.
A prediction interval of some random quantity X, (Lα(X),Uα(X)), is an
interval with an assigned probability α such that

Prob Lα Xð ÞbXbUα Xð Þ½ � ¼ 1−α: ð3Þ

In this paper we consider prediction intervals which are symmet-
ric in the sense that

Prob Lα Xð ÞbXbmedian Xð Þ½ � ¼ Prob median Xð ÞbXbUα Xð Þ½ � ¼ 1−α
2

; ð4Þ

where median(⋅) denotes the median of a random variable. We show
howwe can compute the upper and lower bounds of prediction inter-
vals for target quantities that might be obtained by lognormal point
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or block kriging. In the case of point kriging the target quantity is the
unobserved value Z(x0). In the case of block kriging the target quan-
tity is the median value of the variable Z over a particular block. We
then show how these bounds can be used as pre-survey quantity
measures by expressing them as proportions, in the point kriging
case of the conditional median value of Z(x0), in the block kriging
case of the conditional median value of the variable Z across the block.

2.2. Point kriging

We are used to the mean and variance as summary statistics for
normal random variables, but they are rather less useful for log-
normally distributed variables since they are dominated by values
from the upper tail of the distribution. This is why the geometric
mean or the median of a log-normal random variable is commonly
preferred as a summary statistic, and the conditional median of
a log-normal random variable has been proposed as a more
useful target quantity for spatial prediction than the conditional
mean (Pawlowsky-Glahn and Olea, 2004; Tolosana-Delgado and
Pawlowsky-Glahn, 2007). Now because exponentiation, the back-
transform from a value of Y to a value of Z is a strictly non-
decreasing function, the exponentiation of the conditional median
of Y(x0) gives the conditional median of Z(x0). Since the mean and
median of a normal random variable are identical, the simple back-
transform of ~Y x0ð Þ by exponentiation gives a median-unbiased esti-
mate of a log-normal variable Z(x0) (Chilès and Delfiner, 1999).

As Chilès and Delfiner (1999) point out, this result for back trans-
formation holds for any percentile of Y(x0). As a result, we can back-
transform the end-members of a prediction interval on the trans-
formed scale, Lα(Y),Uα(Y)to find corresponding end-members of a
prediction interval, with the same value of α, on the original scale of
measurement. If, for example, we are interested in a 90% prediction
interval (α=0.1), then the end-members of such an interval, sym-
metric about the conditional median of Z in the sense of Eq. (4), are
exp ~Y x0ð Þ−1:64σK x0ð Þ

n o
and exp ~Y x0ð Þ þ 1:64σK x0ð Þ

n o
.

Now, it is clear that the prediction interval

exp ~Y x0ð Þ−1:64σK x0ð Þ
n o

; exp ~Y x0ð Þ þ 1:64σK x0ð Þ
n o� �

can be rewritten as

exp ~Y x0ð Þ
n o

exp −1:64σK x0ð Þf g; exp ~Y x0ð Þ
n o

exp þ1:64σK x0ð Þf g
� �

We can therefore express the limits of the prediction interval as
standardized limits, Ls, 0.1 and Us, 0.1 which are dimensionless values,
proportions of the conditional median of Z:

Ls;0:1 ¼ exp −1:64σK x0ð Þf g
Us;0:1 ¼ exp 1:64σK x0ð Þf g: ð5Þ

Of course we could compute standardized limits for any value of α
that seems appropriate. In this paper we use α=0.1 throughout.

In summary, the target quantity for the geostatistical survey that
we consider here is the conditional median of the variable of interest
at an unsampled site, and our quality measure is defined in terms of
the prediction interval of this quantity over the model distribution.
We propose that the standardized limits in Eq. (5) are used to derive
pre-survey quality measures for lognormal point kriging, since they
depend only on the kriging variance of the transformed variable,
and so only on its variogram and the distribution of sample points.
The lower limit, Ls, 0.1 could be a useful quality measure in itself. The
possible values of the lower limit are constrained, Ls, 0.1∈(0,1) and
it should be intuitively clear to the user that the closer it is to 1 the
better the quality of the prediction. One might specify, for example,
that a target value for Ls, 0.1 is 0.75, i.e. the lower bound of the
prediction interval is no less than 75% of the conditional median. By
contrast Us, 0.1 has no upper bound, but we might specify some target
maximum value, for example that the upper limit exceeds the condi-
tional median by a proportion, Us, 0.1−1, no larger than 0.75. Another
possible criterion is the width of the standardized prediction interval

Us;0:1−Ls;0:1;

but the disadvantage of this is that it conceals the asymmetry of the
interval about the conditional median. A simple plot of Us, 0.1 and
Ls, 0.1 against the sample density of a grid fromwhich kriged estimates
are notionally derived will present this information in a readily acces-
sible way, showing how the scaled prediction interval shrinks in re-
sponse to increased survey effort.

2.3. Block kriging

2.3.1. Lognormal block kriging
Block lognormal kriging, which entails a change of support from

quasi-point observations (e.g. on soil cores) to larger regions for
which we require predictions, as well as the non-linear transformation
of data, ismore challenging than point lognormal kriging. It has recently
received some attention in the geostatistical literature (Cressie, 2006;
Paul and Cressie, 2011). In particular Cressie (2006) draws attention
to a proposal by Matheron (1974) that the block kriged estimate of
the mean value of Z for block B be formed as the integral of unbiased
point kriging estimates over B:

~ZB ¼ 1
Bj j∫x∈Bexp ~Y xð Þ þ σ2

K xð Þ
2

−ψ xð Þ
( )

dx; ð6Þ

where the integral is over the dimensions of the block, and Bj j is the
Lebesgue measure of B. Cressie (2006) discusses how prediction error
variances can be formed for these estimates. The procedure is computa-
tionally demanding, and, aswith point kriging, the prediction error var-
iances are not independent of the block mean so are not applicable as
pre-survey quality measures in the sense of this paper.

2.3.2. Proposed quality measures based on the block median
In this paper we present some pre-survey quality measures based

on an estimate of the median value of a property across a block B,
obtained from the ordinary point kriging estimates of the trans-
formed variable at locations that comprise a discrete approximation
to B:

XB ¼ x1; x2;…;xNf g;xi∈B∀i ¼ 1;2;…;N:

The value of the transformed variable Y at i, the ith location in the
discrete approximation, is YB

i . We treat the ordinary kriging predic-
tion of it, ~Y B

i , as a random variable with the following structure:

~Y B
i ¼ μB

Y þ ηBY ;i; ð7Þ

where μB
Y is the mean value of Y across B. Note that μB

Y is the spatial
mean across the block, and so it is a random quantity between reali-
zations of the random variable, Y. The random variable ηBY;i is the de-
viation between the conditional expectation of YB

i and the block
spatial mean μB

Y .
Eq. (7) describes a random variable, in practice we have one real-

ization:

~yB
i ¼ mB

Y þ eBY;i; ð8Þ

where ~yB
i is the ordinary kriging prediction at the ith location, andmB

Y

is the (unknown) spatial mean across the block. Since the average of
~yB
i over a sufficiently dense discrete approximation of the block tends
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to the conditional expectation of the block spatial mean, the mean of
eBY ;i tends to the kriging error of the block spatial mean. In this paper
we consider a predictor of the median value of our variable over the
block, conditional on the ordinary kriging predictions, and hence de-
rived from the predictions ~yB

i over XB . As with any kriging prediction
the uncertainty is considered over the underlying random model, to
which we now return.

We assume that the mean of ηBY;i is zero (the point kriging is unbi-
ased) and its variance is denoted ση, i

2 . It is not guaranteed that ordi-
nary kriging is unbiased, but we know that the bias is minimized,
subject to the constraints that allow ordinary kriging to handle an un-
known local mean (Chilès and Delfiner, 1999). If, in addition, we as-
sume normality of the within-block variation of ηBY;i then we can
write:

~Y B
i ∼N μB

Y ; σ2
η;i

� �n o
: ð9Þ

In block kriging, following Matheron's proposal, we could back-
transform each estimate ~Y B

i without bias to an estimate of the condi-
tional mean of the lognormal variable at the ith location in the dis-
crete approximation, ~ZB

i and these are averaged over all locations in
the discrete approximation to estimate the block conditional mean.
Assume, however, that we form an alternative biased estimate, _ZB

thus

_ZB ¼ 1
N

XN
i¼1

exp ~Y B
i

n o

¼ 1
N

XN
i¼1

exp μB
Y þ ηBY;i

n o

¼ exp μB
Y

n o 1
N

XN
i¼1

exp ηBY;i
n o

:

ð10Þ

We can see that the first term on the right-hand side of Eq. (10) is
the median value of the lognormally distributed variable across the
block given the assumption of normality of ηBY ;i. Because ηBY;i has
mean zero, the expected value of _ZB , following from the familiar
properties of the lognormal distribution, is

E _ZBh i
¼ exp μB

Y

n o 1
N

XN
i¼1

exp
σ2

η;i

2

( )
ð11Þ

which provides us with an unbiased estimator of the block median for
some particular realization, ⌣z:

⌣̂z ¼
∑N

i¼1exp ~yB
i

n o
∑N

i¼1exp
σ2

η;i
2

� � : ð12Þ

Note that ⌣̂z is an unbiased estimate of the mean value of the block
median for our particular realization over the model distribution,
depending on the variances ση, i

2 , i=1,2,…N. If we were to generate
eB ¼ eBY;1…; eBY ;N

n o
, a realization of the random variate ηB we could

then compute

s ¼
∑N

i¼1exp eBY;i
n o

∑N
i¼1exp

σ2
η;i
2

� � ; ð13Þ

which is a realization from the model distribution of
⌣̂
Z scaled to di-

mensionless values that are proportions of the unknown block medi-
an. By generating multiple such realizations, and computing
appropriate percentiles of their distribution, we can obtain approxi-
mate prediction intervals expressed, as in the point kriging case, as
proportions of the unknown target quantity. This makes these
intervals suitable pre-survey quality measures. In order to do this
we need a way to generate realizations ofηB , and obtain the unknown
variances ση, i

2 , i=1,2,…N. This is described in the next section.
In summary, for the block kriging case our quantity of interest is

the spatial median of variable Z across the block, the median over
the distribution of realized values, and Eq. (12) allows us to compute
its expectation, conditional on the data, over the distribution of the
randommodel. As quality measures we propose standardized predic-
tion intervals of this expectation over the random distribution.

2.3.3. Implementation
For some particular block,B, we have a discrete approximationXB .

At any location in this approximation, xi the conditional expectation
~Y B
i is estimated by ordinary kriging. All these predictions are obtained

by kriging from the observations at a common set of M locations,
XP ¼ xP;1;…;xP;M .

The most straightforward way to generate a realization of ηB is by
a numerical approximation. We generate a realization of the random
variable Y by a standard simulation method at a set of locations that
comprises the prediction set, XP and a random set of ν locations
drawn at random from across the block: XBR. We may estimate mB

y ,
the spatial mean across the block for the particular realization, by
the arithmetic average of the simulated values at locations in XBR.
We can also derive kriged estimates at points in XB , ~yB

i ; i ¼ 1;…;N,
by ordinary kriging from the simulated values at locations in XP .
These values are then substituted into Eq. (8) to provide a realization
eB ¼ eBY ;1…; eBY;N

n o
. Because we assume that the expectation of ηBi is

zero, we can obtain estimates of ση, i
2 by calculating the mean square

value of many such realizations. Because we are substituting an esti-
mate of mB

y for the unknown value for each realization there will be
some bias, but this is reduced by using a large number, ν, of values
within the block to obtain the estimate, not including the points inXB .

Our procedure to compute scaled limits for the prediction interval
of a block median LBs;α ;U

B
s;α is therefore as follows.

1. Generate the coordinates of the N points in the discrete approxi-
mation to the block, XB .

2. Generate the coordinates of ν points in the block in the set XBR.
These are obtained by probability sampling with a uniform inclu-
sion probability density across the block.

3. Compute the ordinary kriging weights for predicting Y at all loca-
tions in XB from the locations in XBR.

4. Compute the (M+ν)×(M+ν) covariance matrix for Y between
all M+ν locations in the union of sets XP and XBR. Generate a re-
alization of Y at these locations by premultiplying a (N+ν)×1
standard normal variate by the lower-triangular Cholesky factor
of the covariance matrix (e.g. Webster and Oliver, 2007).

5. Estimate the block mean by the average of the simulated values at
the ν locations in XBR.

6. Calculate the ordinary kriging estimates at the locations in XB by
applying the kriging weights computed at step (3) to the simulat-
ed values at the M locations in XP .

7. Substitute the values obtained at steps (5) and (6) into to Eq. (8) to
obtain the elements of the realization eB . Store this realization and
then reiterate steps (2) to (7) a large number, κ, of times.

8. After computing all iterations, compute estimates of the variances
ση, i
2 , i=1,…,N by the mean square value of the corresponding

values of eB ¼ eBY;1…; eBY ;N
n o

over all κ realizations.
9. For each realization, substitute the values of eB ¼ eBY ;1…; eBY;N

n o
and

the estimate of the variances ση, i
2 , i=1,…,N into Eq. (13) to obtain

a realization of s.
10. Denote by Qα and Q1−α the α

2 and 1− α
2 quantiles of the set of κ re-

alizations of s. These are estimates of LBs;α UB
s;α respectively.

These scaled limits may serve as pre-survey quality measures for
block kriging in the same way as the equivalents for the point kriging
prediction intervals. In addition, we considered a further derived



Fig. 1. Histograms of log-transformed data on concentrations of (top) As, (middle) Cu
and (bottom) Zn in the soils of the Humber–Trent region.
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quality measure. Consider a case in which further investigation is re-
quired should the value of Z across a block exceed some threshold Zt
(e.g. a regulatory limit for a potential contaminant). We might choose
to initiate such an investigation if the probability that the block medi-
an exceeds the threshold exceeds some value τ. In the procedure de-
scribed above we could do this by finding the quantile Q1−τ of the
realizations of s and then investigating further if

Q1−τ
⌣̂Z > Zt ;

where ⌣̂Z is obtained from Eq. (12). A pre-survey quality measure can
be obtained by asking by what proportion, Pτ, e the expected block
median will exceed the threshold Zt for a block where Q1−τ

⌣̂Z ¼ Zt .
Simple algebra shows that this is given by:

P1−τ;e ¼
1−Q1−τ

Q1−τ
: ð14Þ

The greater the uncertainty in the prediction the larger Pe will be.
Depending on the application one might select a largest acceptable
value, such as 0.1 or 0.2.

3. A case study with soil data

3.1. The soil data

The soil data are taken from the British Geological Survey's Geo-
chemical Baseline Survey of the Environment (G-BASE) (Johnson et
al., 2005). Specifically we used data from the Humber–Trent region,
which is an area of approximately 15,800 km2 in North East England.
The survey of this region is described in more detail by Rawlins et al.
(2003). In summary, the G-BASE data were collected by sampling al-
ternate 2-km squares of the UK Ordnance Survey grid. A sample site
was selected at random within each of these squares, and five soil
cores were collected from the centre and corners of a 20-m square
and bulked. Each core was 15-cm long and excluded surface litter.
The bulked material from each site was subsequently air-dried, disag-
gregated, sieved to pass 2 mm, then coned and quartered. From each
a 50-g sub-sample was ground in an agate planetary ball mill until
95% of the material was finer than 53 μm. The total concentrations
of 26 major and trace elements were determined in each sample by
wavelength dispersive XRFS (X-Ray Fluorescence Spectrometry). In
this study we analysed observations from 5892 sites.

3.2. Analysis

We examined the distributions and summary statistics of the data
on all 26 elements. We discarded four elements for which a substan-
tial proportion of observations were below the detection limit. Of the
remaining elements 11 had skewed distributions and for nine of these
transformation to logarithms reduced the skewness substantially. We
selected three of these nine elements for detailed study, Cu, Zn and
As, because of their importance as indicators of soil quality. Histo-
grams of the transformed data are presented in Fig. 1. Summary sta-
tistics for the raw data and data after log-transformation are
presented in Table 1. These include the median absolute deviation
(MAD) of the data from their median, multiplied by a consistency cor-
rection (1.483) to provide a robust estimate of the standard deviation
of the data, resistant to outlying values.

The octile skew (Brys et al., 2003) is a measure of the degree of
symmetry of the 1st and 7th octiles of the data about the median. It
is a robust measure of skewness which indicates the underlying sym-
metry of the distribution, whereas the conventional coefficient of
skewness, which is computed from third and second moments of the
data, is sensitive to a few extreme values. Webster and Oliver (2007)
recommend that data are considered for transformation when the



Table 1
Summary statistics of raw and transformed data.

Cu Zn As lnCu lnZn lnAs

mg kg−1 ln (mg kg−1)

Mean 22.48 92.6 16.3 2.88 4.31 2.63
Median 18 73 14 2.89 4.29 2.64
SD 22.57 121.24 14.2 0.66 0.6 0.53
MADa 8.9 34.1 5.93 0.55 0.47 0.5
Skewness 22.48 92.6 16.3 2.88 4.31 2.63
Octile skew 0.31 0.28 0.2 −0.02 0.01 −0.06
Q1 13 53 10 2.56 3.97 2.3
Q3 26 100.25 19 3.26 4.61 2.94

a Median absolute deviation from median.
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conventional coefficient of skewness lies outside the interval (−1,1),
and Lark et al. (2006) found that a corresponding interval for the octile
skew is (−0.2,0.2). Table 1 shows that all these variables have large
positive coefficients of skewness on the original scales of measure-
ment. Transformation to logs brings the octile skews close to zero in
all cases. However, the conventional coefficient of skewness, while
much reduced by transformation, still exceeds 1 for all three elements.
The contrast between this and the results for the octile skewness sug-
gest that there are some outlying values in the data, to which the octile
skewness is resistant while the conventional skewness is not.

Exploratory geostatistical analysis showed no evidence of marked
anisotropy in these variables, particularly at shorter lags where the
variogram is most influential in kriging. Variograms were estimated
for all three variables using the conventional method of moments es-
timator due to Matheron (1962) as well as three robust estimators
reviewed by Lark (2000). These were considered because of the
evidence for outlying data provided by the exploratory analysis
described above. The robust estimators are those proposed by
Cressie and Hawkins (1980), Dowd (1984) and Genton (1998).

Double spherical variogram models were fitted to the estimated
variograms using the FVARIOGRAM procedure in GenStat (Payne,
2010), and weighted least squares. The double spherical model was
used because of prior evidence from analysis of G-BASE data in this
region that there are such nested structures attributable to effects of
parent material (Rawlins et al., 2003). The Akaike Information Criteri-
on, computed after Webster and Oliver (2007), also indicated that the
double spherical model was preferable to alternatives. The vario-
grams were then tested by cross-validation, using the XVOK3D program
in GSLIB (Deutsch and Journel, 1997). This program predicts each ob-
servation in the data set in turn by ordinary kriging from the remain-
ing data, and reports the kriging prediction, ~Y xð Þ and the kriging
variance σK

2(x). We then computed the standardized square cross val-
idation prediction error at each location, for kriging with each vario-
gram model. This is defined as

θ xð Þ ¼
~Y xð Þ−Y xð Þ

� �2

σ2
K xð Þ ; ð15Þ

where Y(x) is the observed value. Normal Q–Q plots of the cross-
validation errors, in which the quantiles of the errors are plotted
Table 2
Statistics on standardized squared cross validation error for each element with variograms

Element Variogram estimator

Matheron Cressie–Hawkins

Mean θ Median θ Mean θ Median

As 1.057 0.265 1.734 0.443
Cu 1.039 0.289 1.504 0.421
Zn 1.064 0.27 1.699 0.432
against the corresponding quantiles of a normal random variable,
were examined, and suggested that the prediction errors appeared
to be normally distributed, although possibly with some outliers.
The expected value of a set of observations of θ(x) in circumstances
where the variogram model, and so the kriging variance, is reliable
is 1, and the median value is 0.455. The median is preferred as a diag-
nostic when considering the possibility that the data contain outlying
values since it will be robust to these (Lark, 2000). We therefore fol-
lowed Lark (2000) in selecting the variogram model for which the
median standardized squared cross-validation error was closest to
0.455. Table 2 presents cross-validation statistics, and Fig. 2 shows
normal Q–Q plots for cross validation by the preferred model for
each variable. The variograms estimated by Matheron's estimator
and by the preferred robust estimator for each element, along with
the fitted models, are shown in Fig. 3.

We then considered point lognormal kriging of each element, with
the selected variogram, at a target point at the centre of a square grid
(i.e. at the maximum distance from any observed value), with grids of
various sampling densities ranging from 4 samples km−2 (a 500-m
square grid, the sampling density used by the British Geological Sur-
vey for many soil surveys in urban regions) to 0.01 samples km−2

(a 10-km grid). We computed the kriging variances at the target
point for each grid and element. We then computed the correspond-
ing upper and lower standardized limits of the prediction interval,
with α=0.1, using Eq. (5).

We then considered lognormal block kriging of each element to a
square block with sides 250 m long. The block was centred at the cen-
tre of a square grid (i.e. the block centre was at the maximum dis-
tance from any observed value). We considered the same sampling
densities used for point kriging, and used the procedure described
in Section 2.3.3 above to calculate upper and lower standardized
limits for the prediction interval of the block median with α=0.1.
The IMSL routine DCHFAC was used to compute the Cholesky factoriza-
tions of covariance matrices, and the routine RNMVN was used to gen-
erate the realizations of the random variates (Visual Numerics, 2006).
We used a discrete approximation to the block of 49 points on a 7×7
uniform grid with points on the vertices of the block. No appreciable
change resulted from using more points in the discretization. We
used ν=1000 randomly selected points within the block to estimate
the spatial mean for each realization. We generated 50,000 realiza-
tions of the variable s in order to generate prediction intervals of
the scaled block median over the model distribution.

We also computed quantile Q0.25 of the realizations of s for each
element and sampling grid, and from this computed P0.25, e, using
Eq. (14), which is the expected proportion by which the block median
exceeds some threshold value for a block selected for further investi-
gation because the computed probability that the block median does
indeed exceed the threshold is 0.75.

3.3. Results

Table 2 shows the cross-validation results for the variograms
obtained by various estimators. For all elements the estimator due to
Matheron, which is not robust to extreme values, gave median values
of θ notably smaller than the expected value of 0.455, suggesting a ten-
dency to overestimate the prediction error variance at most locations
obtained by each estimator.

Dowd Genton

θ Mean θ Median θ Mean θ Median θ

2.018 0.519 1.793 0.471
1.76 0.489 1.715 0.473
2.079 0.521 2.106 0.534
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Fig. 2. Q–Q plots of cross-validation prediction errors for (top) As, (middle) Cu and
(bottom) Zn. The bisector is also drawn on each graph. Prediction is by ordinary kriging
using the variogram estimated by the method of Cressie and Hawkins (1980) for As
and Zn, and the method of Genton (1998) for Cu.

Fig. 3. Variograms of transformed data on (top) As, (middle) Cu and (bottom) Zn. In
each graph the solid symbol shows the estimates of the variogram obtained by the
standard estimator due to Matheron, and the open symbol shows the estimates
obtained by the robust estimator shown by cross-validation to provide the best vario-
gram model. This is the Cressie and Hawkins estimator for As and Zn and Genton's es-
timator for Cu. A double spherical model is fitted to each empirical variogram.
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due to the influence of outliers on the variogram. By contrast themean
value of θ for the variograms obtained with Matheron's estimator are
generally close to 1, as Lark (2000) showed by simulation, this can
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be attributed to the combined effect of outliers on the variogram and
on the cross-validation errors. We therefore selected a robust estima-
tor for the variogram of each element, for which the median value of θ
was close to 0.455. This was the estimator proposed by Cressie and
Fig. 4. (Left) Plot of scaled prediction interval bounds (for solid line, and solid symbol at 4 s
line and open symbol at 4 samples km−2) block kriging estimate of the block median at the
density. P0.25, e is the expected proportion by which the block median exceeds some thresho
that the block median does indeed exceed the threshold is 0.75. The horizontal broken line
Hawkins (1980) for As and Zn, and the one proposed by Genton
(1998) for Cu. The variogram models can be seen in Fig. 3.

The key results are in Fig. 4. Graphs are presented, for each ele-
ment, of the scaled prediction interval bounds for the point-kriged
amples km−2) point kriging of element concentration on the original scale or (broken
center of square grids of different sample densities. (Right) Plot of P0.25, e against sample
ld value for a block selected for further investigation because the computed probability
shows a target value for P0.25, e of 0.15.
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estimate of the element on the original scale of measurement, or for
the block median. On these graphs the sample density of the National
Soil Inventory of England and Wales (NSI, a 5-km square grid) and of
GBASE is shown by a vertical line. Also shown are the graphs of P0.25, e
against sample effort, i.e. proportion by which expected median ex-
ceeds a threshold in a block where the estimated probability that
the threshold is exceeded is 75%.

Fig. 4 shows the following. First, we can see how the scaled predic-
tion intervals for the point value of the variables, or the block median,
become narrower as the sampling density is increased. In all cases
this response to sample effort becomes rather small with sampling
densities larger than about 0.2 samples per km2. We can therefore
see that the GBASE sampling scheme does allow rather more precise
predictions than the NSI, but that the effect of reducing the GBASE
sampling effort by, say, one third, would be rather small as judged
by these results. This is of some practical relevance since the GBASE
survey of the United Kingdom is not yet complete.

Second, we can see that, for point kriging, the notional quality
measure of a lower bound which is at least 75% of the median cannot
be achieved with the sampling densities that are considered here, and
a data user would have to recognize that it was not a realistic stan-
dard for point predictions. With a sample density of 4 points per
km2 we can achieve a lower bound on the prediction interval that is
65% of the conditional median in the case of As and Zn. For kriging
the median across a 250-m square block the quality measure is
achievable at more manageable sample densities (just below the
GBASE density for As), and at rather larger density (about 1 sample
per km2) for Cu and Zn.

Third, we can see that the quality requirement that the upper
bound of the prediction interval is no more than 1.75 times the con-
ditional median (or block median) is much less stringent than the
0.75 standard for the lower bound. It can be achieved for As and Zn
by point kriging from samples of density 0.2 points per km2 (2.25-
km grid), and from 1 point per km2 for Cu. For block kriging of the
median across a 250-m block it is achieved from a relatively coarse
square grid with a spacing of about 9.5 km for Zn and somewhat larg-
er than the maximum 10-km grid considered here for Cu and As.

Fourth, the graphs of P0.25, e against sample effort show that the re-
quirement that the expected median value of a block exceeds a regu-
latory threshold by a factor of no more than 0.15 for a block for
which the estimated probability that the median value exceeds a reg-
ulatory threshold is 0.75 can be met for a 250-m square block by sam-
pling at about 0.25 samples per km2 for As, at about 0.5 samples per
km2 for Cu and at about 0.9 samples per km2 for Zn. Consider a prac-
tical example. Landmanagers in England andWales are required to in-
vestigate further before applying manures to land with soil copper
concentrations that exceed 80 mg kg−1 according to Defra (2009) (a
slightly larger threshold is allowed if the soil pH exceeds 5.5). A
block for which the probability that the median exceeded this thresh-
old was 0.75 would have an expected median concentration of
92 mg kg−1 when kriging is done from a grid of density 0.64 samples
per km2, but would be 103 mg kg−1 if we predicted from the NSI grid.

4. Discussion

We have shown how pre-survey quality measures for lognormal
kriging surveys of soil can be based on variograms of soil properties,
transformed to the lognormal scale. We have shown how these mea-
sures might be used to compare the expected outcomes of surveys
conducted with different levels of effort.

The approach requires that we consider prediction intervals for
unobserved quantities, expressed as proportions of the median value
of the variable at a point or across a block.We believe that this is a fea-
sible approach, given the use of median values to characterize vari-
ables with skewed distributions in standard exploratory data
analysis procedures, and the difficulty of interpreting variances of
skewed variables. Our approach may be criticized on two counts.
First, are such scaled prediction intervals the quality measures that
users require? We accept that users may commonly be interested in
other quality measures, post survey, which give absolute measures
of uncertainty for particular predictions. However, as we have seen,
these cannot be computed pre-survey for the lognormal case. It is
therefore necessary to accept, for the case of geostatistical survey of
lognormally distributed variables, that the quality measures that can
be used, pre-survey, for tasks such as selecting a sampling intensity,
are more restricted than the quality measures that can be reported
post-survey for particular predictions. Second, one might ask whether
the blockmedianwhich we use to develop a quality measure for block
kriging is a useful target quantity. We suggest that it is in some cir-
cumstances, but not in others. An example of the latter is the original
problem for which block kriging was developed, the estimation of the
ore grade of a panel in a mine which the miner either considers
extracting, or has to extract to access deeper material. In this case
the block mean is certainly the quantity of interest, since it corre-
sponds to the overall yield of the block and so the economic return
to the effort taken to extract and process it. However, in other cases
the block median may be useful. Consider the precision agriculture
context, for example, in whichwewant to determine a fertilizer appli-
cation rate for a region from a prediction of the available nutrient con-
centration in the soil. If we base the rate on the regional median then
half the region will be somewhat overfertilized and half somewhat
underfertilized. If, on the other hand, we fertilized according to the
block mean then rather more than half of the region would be under-
fertilized. Similarly, when assessing the impact of land remediation,
the block median may be a useful quantity to estimate since it would
allow for more robust comparisons before and after the intervention.

In this paper we have assumed that the prediction intervals that
we work with are centred on the median of the unobserved variable
in the sense that the probability that the unknown variable falls be-
tween the lower bound of the interval and the median is 1−α

2 . It is,
of course, possible to define other prediction intervals that satisfy
Eq. (3), and in the case of asymmetrically distributed random vari-
ables some of these are shorter than the median-centred interval,
and a shortest interval can be found (Dahiya and Guttman, 1982).
De Oliveira and Rui (2009) discuss shortest prediction intervals in
the case of lognormal kriging, and it would be interesting to
investigate how our work on pre-survey quality measures based on
prediction intervals could be extended to use bounds on the shortest
interval.

5. Conclusions

To conclude, the standard pre-survey quality measures used to
plan geostatistical surveys are based on the kriging variance, but
these cannot be applied in the case of variables which must be pre-
dicted by lognormal kriging because in this case the prediction error
variance for a variable depends, inter alia, on its conditional mean.
Rather, we have shown how prediction intervals for the point lognor-
mal kriging prediction, expressed as proportions of the unknown con-
ditional median, and similar scaled prediction intervals for the block
median, can be used as pre-survey quality measures for geostatistical
surveys of lognormally-distributed random variables.
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