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soil organic carbon (SOC) concentrations and stocks are crucial to understanding
the role of tropical SOC in the global carbon cycle. They also allow for spatial variation of SOC in
environmental process models. SOC is spatially highly variable. In traditional approaches, SOC concentrations
and stocks have been derived from estimates for single or very few profiles and spatially linked to existing
units of soil or vegetation maps. However, many existing soil profile data are incomplete and untested as to
whether they are representative or unbiased. Also single means for soil or vegetation map units cannot
characterize SOC spatial variability within these units. We here use the digital soil mapping approach to
predict the spatial distribution of SOC. This relies on a soil inference model based on spatially referenced
environmental layers of topographic attributes, soil units, parent material, and forest history. We sampled
soils at 165 sites, stratified according to topography and lithology, on Barro Colorado Island (BCI), Panama, at
depths of 0–10 cm, 10–20 cm, 20–30 cm, and 30–50 cm, and analyzed them for SOC by dry combustion. We
applied Random Forest (RF) analysis as a modeling tool to the SOC data for each depth interval in order to
compare vertical and lateral distribution patterns. RF has several advantages compared to other modeling
approaches, for instance, the fact that it is neither sensitive to overfitting nor to noise features. The RF-based
digital SOC mapping approach provided SOC estimates of high spatial resolution and estimates of error and
predictor importance. The environmental variables that explained most of the variation in the topsoil (0–
10 cm) were topographic attributes. In the subsoil (10–50 cm), SOC distribution was best explained by soil
texture classes as derived from soil mapping units. The estimates for SOC stocks in the upper 30 cm ranged
between 38 and 116 Mg ha−1, with lowest stocks on midslope and highest on toeslope positions. This digital
soil mapping approach can be applied to similar landscapes to refine the spatial resolution of SOC estimates.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction
Soils store about three times more organic carbon than is held in
the plant biomass of terrestrial ecosystems and about twice as much
than is current in the atmosphere (Batjes and Sombroek, 1997).
Tropical soils contain about 26% of the soil organic carbon (SOC) stored
in the soils of the world (Batjes, 1996). Global environmental
conditions such as climate, biochemical cycles and vegetation are
related to SOC. In order to understand the role of tropical SOC in the
global carbon cycle as well as to incorporate variations of SOC into
environmental process modeling, accurate estimates of the amount of
SOC with high spatial resolution are necessary.

One common way of deriving the spatial distribution of soil is the
analysis of the factors controlling soil formation. Jenny (1941)
described soil as a function of climate, organisms, topographic relief,
parentmaterial, and time.Within digital soil mapping (also called soil-
l rights reserved.
landscape modeling (Gessler et al., 1995) or predictive soil mapping
(Scull et al., 2003) a Jenny-like approach is used but rather for
quantifying than for explaining spatial soil class/property distribution.
Digital soil mapping is characterized by formulating empirical spatial
or non-spatial soil inference systems between soil observations and
spatially referenced environmental “scorpan” factors (soils and/or soil
properties, climate and/or climate properties, organisms like flora and
fauna and human activities, relief settings, parent material, age, and
spatial coordinate n) (McBratney et al., 2003).

A broad rangeof statisticalmethods have been applied towardsdigital
soil mapping of SOC or organic matter (OM). Most commonly, multiple-
and linear regression have been used for spatial quantifications of SOC/
OM (Moore et al., 1993; Arrouays et al., 1995; Chaplot et al., 2001;
Florinsky et al., 2002; Powers and Schlesinger, 2002; Thompson and
Kolka, 2005; Thompson et al., 2006). Thismodeling technique has several
advantages, such as simplicity in application and ease of interpretation
(Hastie et al., 2001). Fewer studies used generalized linear models
(McKenzie and Ryan, 1999), tree models (Kulmatiski et al., 2004;
Henderson et al., 2005) or artificial neural networks (Minasny et al.,
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2006) for relating SOC and OM storage to environmental predictors. The
latter techniques have the potential for discovering non-linear relation-
ships andmight therefore prove more powerful for digital SOCmapping.
From the field of machine learning, ensemble approaches like bagging
(Breiman, 1996), boosting (Freund and Schapire, 1996) or Random Forest
(Breiman, 2001) could be applied for SOC prediction in order to enhance
prediction accuracy. These approaches, however, have not yet been
reported in SOC prediction literature. Within geostatistics soil forming
factors in terms of ancillary environmental predictors can be used to
estimate the spatial distributionof SOC/OMthroughkrigingwith external
drift or co-kriging (Simbahan et al., 2006). Bhatti et al. (1991), Hengl et al.
(2004) as well as Simbahan et al. (2006) applied regression kriging to
predict SOC or OM.

Random Forest (RF), a new method of data mining, has several
advantages compared to most of the modeling techniques mentioned
above, such as (Breiman, 2001; Liaw and Wiener, 2002): Ability of
modeling high dimensional non-linear relationships, handling of
categorical and continuous predictors, resistance to overfitting,
relative robustness with respect to noise features, implemented
unbiased measure of error rate, implemented measures of variable
importance, and only few user defined parameters.

We hypothesized that terrain-driven hydrological flow patterns
and mass-movement are the dominating processes responsible for
SOC redistributions. We furthermore assumed that SOC storage on
Barro Colorado Island (subsequently referred to as BCI) is related to
the spatial distribution of soil properties such as soil texture, color, and
mineralogy, as well as geology and forest history.

The aim of this study was to propose a RF-based digital SOC
mapping framework from which knowledge of soil processes can be
derived. Using this framework we were able to estimate the SOC
concentrations and stocks on BCI in the spatial domain more
realistically than by simply relating mean SOC values to soil mapping
units as has been the traditional approach.

2. Methods

2.1. Study site

Barro Colorado Island (BCI) (Fig.1) (9°9′N, 79°51′W)was formed by
the flooding of Lake Gatun in the Panama Canal basin in 1914. The
Fig. 1. Hillshade of Barro Colorado Island derived from the digital elevation model
superimposed on the locations of sampling sites, contour lines, and the geological map
(Johnsson and Stallard, 1989). Inset: Barro Colorado Island's location in Panama.
1500 ha former hilltop rises 137 m above the lake level. The climate is
tropical with a mean annual temperature of 27 °C. The annual
precipitation averages 2600 mm with 90% of the rainfall occurring in
the wet season between May and December (Dietrich et al., 1982). BCI
is entirely covered by semi-deciduous lowland moist tropical forest.
Parts of the island were cleared for agricultural purpose before and
during the creation of the Panama Canal. The southwest of the island
is old growth which has not been disturbed for at least 200 years
(Leigh, 1999), whereas the northeast is younger regrowth with 100 or
more years in age (Foster and Brokaw, 1996).

The geology (Fig. 1) consists of two main formations: the Bohio
dating back to the early Oligocene (Ministerio de Comercio e
Industrias, 1976) and the younger Caimito formation from the late
Oligocene (Woodring, 1958). Both formations are sedimentary and
each consists of two facies: volcanic and marine. In addition, there are
extrusive and intrusive igneous rocks from the Oligocene and early
Miocene age (Johnsson and Stallard, 1989). The main extrusive
component is an andesite flow, which caps the island (Johnsson and
Stallard, 1989) forming a flat, slightly tilted hilltop. The most obvious
structural feature is the sinistral strike-slip fault system that trends
NNE–SSW across the centre of the island (Fig. 1).

The dominant soils on BCI are immature Cambisols, and most of
the more mature soils are Ferralsols (Fig. 5; Table 1; WRB, 2006). They
are clay- and nutrient-rich and contain high amounts of calcium,
magnesium, nitrogen, and potassium, but presumably low amounts of
phosphorus (Dietrich et al., 1982; Yavitt et al., 1993; Yavitt, 2000;
Barthold et al., 2008). Until now, SOC estimates for BCI were limited to
parts of the island using only few samples and limited spatial
coherence (Yavitt et al., 1993; Yavitt, 2000; Yavitt and Wright, 2002).

Soil clay mineralogy of the andesite plateau and the Caimito
volcanic facies is dominated by kaolinite. Furthermore, the deep red
clays on the Bohio formation and the Caimito marine facies are also
dominated by kaolinite. The loams of the Bohio formation and the
Caimito marine facies, however, also contain substantial amounts of
smectite. On the other hand, the pale swelling clays on all geological
units are dominated by smectite (Baillie et al., 2006). Johnsson and
Stallard (1989) related the presence of smectites in this highly
weathered environment to the rapid erosion on steep slopes leading
to shallow soils with short residence times of minerals.

2.2. Data

2.2.1. Soil organic carbon

2.2.1.1. Soil sampling. In order to analyze and predict the amount and
distribution of SOC most efficiently, we established a design-based,
stratified, two-stage sampling plan (McKenzie and Ryan, 1999) with
topography and geology as the stratifying variables. A digital quantifica-
tion of catenary landscape position was calculated from the digital
elevationmodel (DEM) by combining the compound topographic index
(CTI) (Beven and Kirkby, 1979) with the projected distance to stream
(PD02) (Behrens, 2003). Lower slope positions within a distance of
100m of Gatun Lakewere not considered in this quantification because
these represent former mid-slope positions before the flooding of the
Panama Canal, and hence do not show classical catenary soil attributes
(Baillie et al., 2006). The 50 ha plot of the Centre for Tropical Forest
Science (CTFS) in the centre of BCI was also excluded from the sampling
scheme (Fig. 1), in order to avoid disturbance.

We calculated four CTI classes and three PD02 classes on an equal area
basis. Those classes were combined and the resulting 12 distinct
environments were further stratified into four geological units. From
those 48distinct environmentswe randomly selected three replicate sites.
Additionally, 21 sites were chosen randomly from all distinct environ-
ments in order to enlarge the sampling size, resulting in a total of 165 sites.

Soil samples were taken during the beginning of the wet season,
between June and September 2005. At each site a 50 cm deep soil



Table 1
BCI soil mapping units and corresponding geological units (A: andesite flow, B: Bohio
formation, CM: Caimito marine facies, CV: Caimito volcanic facies), mean field
description of topsoil (T) and subsoil (S) depth, texture, color, and correlation to WRB
soil classification systema

Soil mapping unit
(abbreviation)

Geological
unit

Mean
depth [m]

Mean
textureb

Most
frequent
Munsell soil
color

WRBa

correlation

Ava (A) A T: b0.04 sicL 7.5YR 3/3,
7.5YR 3/4

Hypereutric &
Haplic Ferralsol

S: N2 siC, C 5YR 4/4,
5YR 4/6

Marron (M) A T: b0.05 sicL 7.5YR 3/2,
7.5YR 3/4

Leptic & Eutric
Cambisol

S: b1 siC 7.5YR 4/6,
5YR 4/4

Lake (L) A T: b0.03 siC 7.5YR 3/4 Vertic Luvisol &
Acrisol & Vertic
Eutric or Alumic
Gleysol

S: b1.5 C Mottled
10YR 6/3

Swamp (Sw) A T: b5 cL 7.5YR 3/1 Mollic, Eutric &
Haplic GleysolS: N1 C, siC Mottled

2.5Y 4/3,
2.5Y 5/1

Fairchild (F) B T: b0.04 sicL 7.5 YR 3/3 Leptic & Eutric
CambisolS: b0.6 siC 2.5YR 4/4,

2.5YR 4/6
Standley (S) B T: b0.15 siC 7.5YR 3/2,

5YR 3/3
Leptic & Eutric
Cambisol

S: b0.5 sicL, siC 7.5YR 4/4,
5YR 4/4

Gross (G) B T: b0.04 sicL 7.5 YR 3/3 Vertic Luvisol &
Acrisol & Vertic
Eutric or Alumic
Gleysol

S: N2 C, siC Mottled 5Y
6/2

Poacher (P) CM T: b0.08 sicL 7.5 YR 3/3,
5YR 3/3

Hypereutric &
Haplic Ferralsol

S: N2 sicL, siC 5YR 4/6,
2.5YR 4/6

Wetmore (W) CM T: b0.1 cL, sicL 7.5 YR 3/3 Leptic & Eutric
CambisolS: b1 sicL 7.5YR 4/4,

5YR 4/4
Lutz (Lu) CM T: b0.1 sicL, siC 7.5 YR 3/3,

5YR 3/3
Ferric &
Hypereutric
FerralsolS: b1 siC, C 7.5YR 4/4,

5YR 4/4
Zetek (Z) CM T: b0.05 siC 7.5YR 3/2 Vertic Luvisol &

Acrisol & Vertic
Eutric or
Alumic Gleysol

S: N2 C, siC Mottled
2.5Y 7/2, 5Y
7/3

Harvard (H) CV T: b0.03 cL, sicL 7.5 YR 3/3,
5YR 3/3

Hypereutric &
Haplic Ferralsol

S: N1.5 siC, C 5YR 4/6,
2.5YR 4/6

Hood (Ho) CV T: b0.05 cL, sicL 7.5 YR 3/3,
5YR 3/3

Leptic & Eutric
Cambisol

S: b0.5 cL, sicL 7.5YR 3/4,
5YR 4/4

Barbour (B) CV T: b0.05 sicL 7.5YR 3/2 Vertic Luvisol &
Acrisol & Vertic
Eutric or Alumic
Gleysol

S: N2 C, siC Mottled 5Y
6/3

a WRB (2006).
b For texture classes see FAO (2006).
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profile was dug and a soil sample of 250 g taken at the depth intervals
of 0–10, 10–20, 20–30 and 30–50 cm.

2.2.1.2. Laboratory analyses. The samples were oven-dried at 60 °C and
passed through a 2 mm sieve; recognizable undecomposed OM
particles were removed. A sub-sample of about 20 g was finely ground
and dried to constant weight at 105 °C. Total carbon was measured by
dry combustion using at least three 20 mg sub-samples form each
sample until the coefficient of variation of replicate measurements
was below 0.05. According to Baillie et al. (2006), carbonates were not
to be expected in these soils on account of their low pH; therefore we
assumed that total carbon equals organic carbon. SOC stock (also
called SOC storage, SOC pool or SOC density), i.e. carbon mass per unit
area for a given depth, was calculated according to:

SOCstock ¼ SOCconz � ρ� 1−STð Þ � Δd� UFC ð1Þ
where SOCstock is soil carbon stock (kg ha−1), SOCconz is soil carbon
concentration (%), ρ is bulk density of the fine earth (kg m−3), ST
(stoniness) is the volumetric percentage (vol.%) of fragments of N2mm,
Δd is the thickness of the layer (m), and UFC is a unit conversion factor
(100 m2 ha−1). Carbon mass per unit area for a given depth was
calculated by summing SOCstock over all layers.

Bulk density was determined for 24 sites by the compliant cavity
method (Soil Survey Staff,1996). Baillie et al. (2006) determined stoniness
based on field estimates of volume percentage of fragments N2 mm.

As the absolute uncertainty of SOCstock is a function of individual
uncertainties (Eq. (1)) — we assumed that these factors are
independent — the error propagation rule for multiplications of
independent factors was used for its determination (Taylor, 1997). For
cumulative SOCstock total uncertainty for a given depth was calculated
by using the error propagation equation for summations of indepen-
dent summands (Taylor, 1997).

2.2.2. Environmental predictors

2.2.2.1. Topography. Topography has the potential to explain large parts
of the variation of SOC. Thus, models accounting for terrain attributes
can provide more realistic estimates of SOC pools. Terrain attributes,
the most extensively used environmental predictors in digital soil
mapping (McBratney et al., 2003), approximate water, solute, and
sediment fluxes throughout the landscape. These are driven by
gravity, solar insolation and micro-climate, and hence may control
spatial patterns of soil properties such as SOC.

Terrain attributes were derived from the 5 m DEM of BCI, which is
based on a topographic map in 1:25,000 scale with 10 m contour
intervals (Kinner et al., 2002). A total of 13 terrain attributes were
calculated and extended to 15 datasets by deriving additional
variations (Table 2). Terrain parameters can be grouped into local,
regional and combined terrain attributes. Local terrain attributes are
based on amoving window techniquewith the same spatial extent for
each cell. Regional terrain attributes are based on contributing area,
and combined terrain attributes derived through combinations of
local and regional attributes (Behrens, 2003).

2.2.2.2. Soil. The BCI soil map, whose taxa are based on geology,
general topographic indicators, soil color and texture (Baillie et al.,
2006), was used as soil factor within the digital SOC mapping
framework (Fig. 5). Soil color relates to SOC with darker colors
generally indicating higher SOC concentrations (Konen et al., 2003;
Viscarra-Rossel et al., 2006). Soil texture, particularly soil clay content,
is positively correlated to SOC (Arrouays et al., 1995; Powers and
Schlesinger, 2002; Kahle et al., 2002). Additionally, a variety of authors
(Van Breemen and Feijtel, 1990; Torn et al., 1997; Baldock and
Skjemstadt, 2000; Six et al., 2002) propose that SOC stabilization is
influenced by clay mineralogy, with 2:1 clays like smectite stabilising
SOC to a greater extend than 1:1 clays like kaolinite.

Table 1 shows the local BCI soil units, some general field
descriptions and the corresponding WRB (WRB, 2006) soil names.
The Swamp soil unit was merged with Lake on the basis of parent
material, soil color, and texture since there were no observations in
the Swamp unit. All other soil units remained unchanged.

2.2.2.3. Geology. Soils are the weathering product of the parent material.
Parent material was derived from the geological map of BCI (Fig. 1)
(Woodring, 1958; Johnsson and Stallard, 1989). The andesite flow is a
resistant andnon-vesicular rock,withphenocrysts consistingprimarilyof



Table 2
Terrain attributes used for digital soil organic carbon mapping

Terrain attribute Abbreviation Author

Local Slope SLT Tarboton, 1997
Horizontal curvature CHOS Shary et al., 2002
Mean curvature CMES Shary et al., 2002
Profile curvature CPES Shary et al., 2002
Landform evolution LEV Nogami, 1995

Regional Contributing area CA Dietrich and Montgomery, 1998
Stream power index SPI Moore et al., 1991 (calculation based on Dietrich and Montgomery, 1998; Tarboton, 1997)
Transport capacity TC Schmidt and Dikau, 1999 (calculation based on Dietrich and Montgomery, 1998; Tarboton, 1997)
Relative hillslope position RHP Behrens, 2003
Local elevation (for 0.2 ha and 0.5 ha) LE02 LE05 Behrens, 2003
Projected distance to stream (for 0.2 ha and 0.5 ha) PD02 PD05 Behrens, 2003

Combined Compound topographic (wetness) index CTI Beven and Kirkby, 1979 (calculation based on Dietrich and Montgomery, 1998; Tarboton, 1997)
LS-factor LS Feldwisch, 1995 (calculation based on Dietrich and Montgomery, 1998; Tarboton, 1997)

Fig. 2. Boxplots of soil carbon concentrations as a function of depth. The crossbar within
the box shows the median, the length of the box reflects the interquartile range, the
fences are either marked by the extremes if there are no outliers, or else by the largest
and smallest observation that is not an outlier. Bars are outliers N1.5 times from the
interquartile range away from the upper/lower quartile, whereas circles with a cross are
outliersN2 times the interquartile range away from the upper/lower quartile. The
notches represent the 95% confidence interval around the median.
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plagioclase (JohnssonandStallard,1989). Themain rock typeon theBohio
volcanic facies is a conglomerate, which consists of basaltic clasts of all
sizes (pebbles, cobbles and boulders) in a matrix of finer basaltic clasts
(Woodring, 1958). The marine facies is interlayered with the conglom-
erate and consists of greywacke sandstone of poorly sorted angular
basaltic coarse sand in a finely-grained matrix containing feldspars and
some quartz (Woodring, 1958). The latter facies is not separately
delineated in Fig. 1. The main constituents of the Caimito volcanic facies
are a basaltic agglomerate and different kinds of greywacke, varying only
in the degree of sorting of the grains. The Caimitomarine facies primarily
consist of foraminiferal limestone with abundant pelecypods and a large
detrital component in the form of vitric volcaniclastic debris, plagioclase
and quartz (Johnsson and Stallard, 1989). Furthermore, Fig. 1 does not
display intrusive basaltic to basaltic andesitic dikes which can be found
mainly within the Bohio formation and the volcanic facies of the Caimito
formation (Johnsson and Stallard, 1989).

2.2.2.4. Forest history. The relationship between land use history and
SOCwas observed with SOC stocks being relatively lower in secondary
compared to primary forests depending on type of past land use and
forest age (e.g. Silver et al., 2000; Paul et al., 2002).

Svenning et al. (2004) derived the forest history from an 1927
aerial photograph of BCI by converting it into a grayscale grid. They
delineated three forest history classes (old growth, tall secondary
forest, low secondary forest) by sequentially grouping different grey
values. Bright colors were assigned to be younger or cleared forests
whereas dark colors are high forest areas. Due to the fact that no
absolute time periods were assigned to each forest history class, forest
history can only be an ordinal predictor for the spatial prediction of
SOC concentrations and stocks.

2.3. Data pre-processing

Prior tomodeling we identified and removed outliers from the SOC
dataset, which were taken as values deviating N2× interquartile range
away from the upper and lower quartile. This resulted in 3–5 SOC data
point exclusions in each depth interval. Fig. 2 shows the SOC raw and
pre-processed dataset.

2.4. Random Forest

Random Forest (RF) is an example of a machine learning method. RF
consists of an ensemble of randomized classification and regression trees
(CART) (Breiman, 2001). We assume familiarity with the basics of CART
(Breiman et al., 1984). Numerous trees are generatedwithin the algorithm
andfinallyaggregated to give one singleprediction. In regressionproblems
the prediction is the average of the individual tree outputs, whereas in
classification the trees vote by majority on the correct classification.

Within the training procedure, the RF algorithm produces multiple
CART-like trees, each based on a bootstrap sample (sample with
replacement) of the original training data. In addition to this normal
bagging function (Breiman, 1996), the best split at each node of the
tree is searched only among a randomly selected subset of predictors.
All trees are grown to maximum size without pruning.

RF has several advantages over other statistical modeling
approaches (Breiman, 2001; Liaw and Wiener, 2002). Its variables
can be both continuous and categorical. The RF algorithm is quite
robust to noise in predictors and thus does not require a pre-selection
of variables (Diaz-Uriate and de Andres, 2006). As only a limited
random number of predictors is used to search for the best split at
each node, the diversity of the forest is increased (low correlation of
individual trees) and the computational load is reduced. Pruning the
trees is not necessary; it results in low bias and high variance trees and
also saves computation time (Svetnik et al., 2003). As a large number
of trees are averaged RF achieves both low bias and low variance
(Diaz-Uriate and de Andres, 2006). The algorithm is robust to
overfitting since each tree is trained on a unique bootstrap sub-
sample of the data (Arun and Langmead, 2005). RF provides reliable
error estimates by using the so called Out-Of-Bag (OOB) data (the
proportion which is not used in the bootstrap subset — on average
about on third of the data is excluded, while some others will be
repeated in the sample), and thus eliminates the need for an
independent validating dataset. The latter advantage should be of
particular interest to soil science, since the collection of soil samples
and laboratory analyses is in many cases time-consuming and
expensive.



106 R. Grimm et al. / Geoderma 146 (2008) 102–113
RF depends only on three user defined parameters: the number of
trees (ntree) in the forest, the minimum number of data points in each
terminal node (nodesize), and the number of features tried at each
node (mtry). The default of ntree is 500. However, more stable results of
estimating variable importance (see below) are achievedwith a higher
number of ntree(Diaz-Uriate and de Andres, 2006), thus we used ntree=
1000. For nodesize we used the default for regression RF which is 5
instances in each terminal node. Concerning mtry the default for
regression problems is one third of the total number of predictors.
However, as RF prediction performance can be sensitive to mtry

(Breiman and Cutler, 2004) we used an iterative approach to
determine the best mtry in terms of smallest OOB mean square error
(Eq. (2)). Within each depth interval we applied the RF algorithmwith
ntree=1000, nodesize=5, andmtry values of 1, 3, 6, 9, 12, 15 and 18 with
100 replicate models for each mtry value (Section 3.2.1).

Themain disadvantage of RF and ensemble algorithms in general is
their limited interpretability. This algorithm is therefore often called a
“black box” approach, since the relationship between predictors and
response cannot be examined individually for every tree in the forest.
In CART models, in contrast, a predictor variable in a single tree is
related to the predictions. It should, however, be mentioned that
single CART models are unstable in that minor changes in the training
sample can lead to changes in the predictors, which are used for the
splits. One should therefore be careful with drawing conclusions from
single CART models concerning variable importance (Sutton, 2005).
Moreover, as complexity in terms of the number of terminal nodes of
single trees rises with increasing number of instances, interpretation
of CART may become confusing.

The interpretation in RF is facilitated by two measures of variable
importance. The first is the difference between the OOB error (Eq. (2))
of each tree and the same computed after permuting a predictor. The
change in OOB error for each randomly permutated predictor gives an
indication of the importance of this particular predictor. Random
permutation should therefore have little effect on the estimated OOB
error if a predictor is irrelevant. The second variable importance
measure is the same as used in the CART algorithm and represents the
total decrease in node impurity from splitting on the variable as
measured for regression by the residual sum of squares and averaged
over all trees. As the latter is computed on the training data its
conclusion is based on overfitted models (Prasad et al., 2006). Hence,
we only report the first variable importance measure.

Model performance is ideally addressed by using a large
independent test dataset that was not used in the training procedure.
When data is limited, k-fold cross-validation is often used. RF uses an
extension of cross-validation, where each OOB sample is predicted by
its corresponding bootstrap training tree. By aggregating the OOB
Table 3
Soil organic carbon (SOC) concentrations and stocks (±1 SD)

Soil depth All observations Hypereutric, Haplic, Ferri
Ferralsola

cm n %SOC n %SOC

0–10 161 5.00 (1.77) 18 4.38 (1.88)
10–20 158 2.13(0.64) 18 2.22 (0.53)
20–30 158 1.53 (0.46) 18 1.65 (0.46)
30–50 154 1.10 (0.35) 18 1.18 (0.35)

cm n Mg SOC ha–1 n Mg SOC ha

0–10 161 38.05 (15.29) 18 33.27 (15.1
10–20 158 17.84 (6.18) 18 17.95 (4.91
20–30 158 13.57 (4.87) 18 13.61 (4.62
30–50 154 21.02 (8.08) 18 21.80 (7.02
0–30 69.46 (17.20) 64.83 (16.5
0–50 90.48 (19.00) 86.62 (17.9

a WRB (2006).
predictions of all trees in the forest the mean square error (MSE) can
be estimated (Liaw and Wiener, 2002):

MSEOOB ¼
∑
n

i¼1
Yi � bY OOB

i

� �2

n
ð2Þ

Svetnik et al. (2003) showed that the OOB estimate of prediction
accuracy yields results comparable to k-fold cross-validation. How-
ever, OOB estimates of error rate are computationally less expensive
than standard k-fold cross-validation. As the MSE is scale dependent it
cannot be used for comparing SOCmodel performance in different soil
layers. Therefore, we additionally reported the normalized OOB mean
square error (NMSEOOB) which was calculated as:

NMSEOOB ¼ MSEOOB

Var Ykð Þ ð3Þ

where Var is the total variance of carbon concentrations Y in the depth
interval k.

In soil science in general and pedometrics in particular, RF has not
yet to be applied widely as a modeling tool. The only spatial mapping
applications so fare have been an investigation of risk mapping of tick-
borne disease (Furlanello et al., 2003), the prediction of tree species
distributions under future climate scenarios (Prasad et al., 2006), and
remote sensing studies (Ham et al., 2005; Pal 2005; Gislason et al.,
2006; Lawrence et al., 2006). However, RF has frequently been applied
to non-spatial analyses in biology, biometrics, genetics and bioinfor-
matics (Gunther et al., 2003; Svetnik et al., 2003; Bureau et al., 2003;
Schwender et al., 2004; Parkhurst et al., 2005).

For all RF computations, we used the “RandomForest” package
(Liaw andWiener, 2002) for the R statistical language (R Development
Core Team, 2006).

3. Results and discussion

3.1. Soil carbon concentrations and stocks

SOC concentrations decreased with depth as expected, and varied
significantly between the observed depth intervals, but insignificantly
between soil types (Fig. 2; Table 3). In general, high SOC concentrations
translated into high carbon stocks. The pale swelling clays (Vertic Luvisol,
Acrisol andVertic Eutric orAlumicGleysol) constitute anexception in that
they have low SOC concentrations but high carbon stocks. This is due to
their comparatively high bulk density and low stoniness. Within every
soil class SOC stocks of the upper 10 cm were significantly higher than
subsoil SOC stocks. The overall SOC stocks in the upper 30 cm was
72.61 Mg ha−1 and to a depth of 50 cm 92.72 Mg ha−1.
c Vertic Luvisol & Acrisol &
Vertic Eutric or Alumic
Gleysola

Leptic, Eutric, Ferralic
Cambisola

n %SOC n %SOC

39 5.35 (1.95) 104 4.97 (1.66)
40 1.91 (0.68) 100 2.21 (0.62)
40 1.35 (0.41) 100 1.59 (0.46)
40 0.94 (0.26) 96 1.16 (0.37)

–1 n Mg SOC ha–1 n Mg SOC ha–1

1) 39 45.04 (17.96) 104 35.98 (14.51)
) 40 18.11 (6.95) 100 17.67 (6.02)
) 40 13.76 (4.72) 100 13.49 (4.75)
) 40 20.71 (7.63) 96 20.87 (7.95)
5) 76.91 (19.83) 67.14 (16.41)
8) 97.62 (21.24) 88.01 (18.24)
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The standard deviation of SOC stocks was high (Table 3), as was
also observed in most of the studies referred to in Table 4. These
estimates of uncertainty are coarse at best and ignore the bias of site
selection, since boulders and rock outcrops obstruct manual soil
pit excavation. Several attempts may therefore be necessary before
an observation can actually be recorded. Hence, the soil map
may underestimate the spatial extent of rocky areas and stoniness
on BCI.

Comparisons with other tropical regions (Table 4) show that SOC
stocks on BCI are higher than the estimates of global tropical means
(Post et al., 1982; Batjes, 1996; Amthor and Huston, 1998; Jobbagy and
Jackson, 2000), as well as of the Brazilian Amazon (Batjes and
Dijkshoorn,1999; Bernoux et al., 2002; Cerri et al., 2003). Compared to
Ecuador (Rhoades et al., 2000; de Koning et al., 2003), Mexico (Hughes
et al., 1999) and Hawaii (Bashkin and Binkley, 1998), the SOC stock on
BCI is significantly lower. Compared to Costa Rica (Powers and
Schlesinger, 2002; Powers, 2004; Veldkamp et al., 2003; Powers and
Veldkamp, 2005) and Puerto Rico (Brown and Lugo, 1990; Li et al.,
2005), SOC stocks on BCI are lower. The ranges of differences, however,
were narrower. These differences underline the strong influence of
climate and ecosystem properties including soil properties, such as
clay content and mineralogy.

3.2. Digital soil organic carbon mapping using Random Forests

3.2.1. Parameter optimization
In order to optimize RF prediction performance in terms of lowest

OOB normalized mean square error (NMSEOOB), we used an iterative
approach with mtry model settings of 1, 3, 6, 9, 12, 15 and 18, each
replicated 100 times (Fig. 3). As the total range and the differences
between testedmtry settings were relatively small, with most changes
occurring in the third position after decimal point, these differences
were not relevant despite their frequent significance. Those parameter
settings of mtry within our dataset, which were influencing prediction
performance to less than the second decimal place of NMSEOOB, were
regarded as having an equal quality of prediction performance. In the
topsoil the lowest mtry of 1 was the best model parameter setting,
whereas in the soil layers 10–20 and 20–30 cm mtry=12 performed
best with ranges of equal prediction performances of 6 to 18 and 9 to
18, respectively. Setting mtry equal to the total number of predictors
corresponds to a normal bagging function (Breiman, 1996). Therefore,
in the depth interval 10–20 and 20–30 cm the improvement of
prediction accuracy by using RF instead of bagging was insignificant.
Between 30 and 50 cm testedmtry values between 3 and 12 performed
best, with the defaultmtry of 6 randomly selected features at each split
revealing best prediction accuracies.

In correspondence with other studies (e.g. Svetnik et al., 2003;
Diaz-Uriarte and de Andres, 2006), we suggest that the default ofmtry

is often a good choice. Higher numbers of mtry than the default value
indicate that some noise variables are contained in the total set of
environmental predictors. The best NMSEOOB performance in the
topsoil could be achieved with the lowestmtrymtry values. This results
in the highest randomness in feature selection at each node. Model
performance evaluation by feature selection approaches (e.g. Behrens
et al., 2007) is, however, beyond the scope of this study.

3.2.2. Model performance
Table 5 shows the RF prediction performance based on the OOB

mean square error (MSEOOB), OOB root mean square error (RMSEOOB),
and the OOB normalized mean square error (NMSEOOB). In general
model performances were limited. Prediction accuracy was on
average lowest in the topsoil with NMSEOOB=0.94 compared to the
subsoil ranging between 0.75 and 0.91 in NMSEOOB. These results
suggest that particularly in the topsoil the spatial distribution patterns
of SOC are highly variable due to small scale variations in input,
redistribution, stabilization, as well as in intrinsic random variability
of SOC. They are therefore difficult to approximate with state of the art
soil-landscape modeling assessments of environmental layers.
Furthermore, technical sources of uncertainties, as for instance the
accuracy of the DEM and the localization of sampling sites with the
global positioning system (GPS), limit the model performance. On the
other hand, we did not find any residual spatial structure, and
therefore, we could not adopt a regression–kriging strategy (Odeh
et al., 1995) in order to improve prediction accuracy.

3.2.3. Variable importance
Variable importance revealed different dominating environmental

features between topsoil (0–10 cm) and subsoil (10–50 cm) RF SOC
models (Fig. 4). Regarding the topsoil on average erosion processes
approximated by regional (e.g. contributing area (CA), relative
hillslope position (RHP)), and combined terrain attributes (e.g.
combined topographic index (CTI), LS-factor (LS)) were most relevant,
followed by the local attributes like slope (SLT) and curvatures (CHOS,
CMES, CPRS). The categorical predictors soil, geology, and forest
history were of little importance for topsoil SOC prediction, suggesting
that neither soil forming processes nor past land use changes
influence the topsoil SOC distribution. The topsoil SOC is dependent
on the present-day biomass input to soil, which, however, is not
covered by forest history because past land use was derived form an
aerial photograph of 1927. Since prediction performance is low in the
topsoil (Section 3.2.2), variable importance is restricted in terms of
interpretation.

Variable importance among predictors showed similar patterns in
the subsoil below 10 cm. Similarly to the topsoil, topography had a
strong impact on SOC predictions. Regional and combined parameters
were more crucial than local terrain attributes. CTI, which is a proxy
for soil moisture (Beven and Kirkby, 1979), was highly influential in
the soil layer between 10 and 20 cm. The soil map was the most
important predictor for the whole depth interval of 10–50 cm,
indicating that soil texture and/or color determines the subsoil
SOC distribution. As with topsoil, geology and forest history were
weak predictors within the RF models. Between 30 and 50 cm
the importance value of forest history was even below zero,
indicating that random noise would be a better predictor in this soil
depth.

Although certain predictors are more important within each RF
model, we could not quantitatively determine their functional
relationship to SOC. In this respect, spatial visualizations of prediction
results were essential to understanding the driving processes behind
SOC predictions (Section 3.2.4.).

3.2.4. Spatial prediction
We spatially predicted the SOC concentration in the depth

intervals 0–10, 10–20, 20–30 and 30–50 cm using RF, respectively
(Fig. 5a–d). In order to compare lateral and vertical SOC distribution
patterns we computed the SOC stocks (Fig. 6a–d), since natural pedons
include non-soil components such as rocks and pebbles. SOC stocks
therefore reflect SOC distributions more realistically. As we did not
have a spatial representation of neither bulk density nor stoniness that
should be used for the spatial conversion of SOC concentrations
(Fig. 5) to SOC stocks (Fig. 6), we used mean values stratified by soil
units. This approach therefore cannot account for variability in bulk
density and stoniness within single soil units, and hence might mask
meaningful variations.

Both the SOC concentration (Fig. 5a–d) and stock (Fig. 6a–d) maps
mirror the high importance of topography and soil units for SOC
distribution (Section 3.2.3). Clear catenary soil patterns were
dominant in each layer, with highest SOC stocks in toeslope and
lowest in midslope positions. These patterns were less distinctive
within the subsoil, suggesting that the erosive power of surface
processes is limited to shallow depths. In contrast to that the impact of
soil units was more accentuated in the subsoil.
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In each of the observed soil depth intervals, the pale swelling clays
of the soil units Zetek, Barbour, Lake (including Swamp), and Gross
(Table 2) showed on average higher SOC stocks than the other soil
Table 4
Estimates of tropical soil organic carbon (SOC) stocks

Author Region Ecosystem Soil type

Post et al., 1982 Global Tropical very dry foresta

Tropical dry foresta

Tropical moist foresta

Tropical wet foresta

Batjes, 1996 Global Ferralsolsf

Cambisolsf

Luvisolsf

Amthor and
Huston, 1998

Global Tropical forest

Jabbagy and
Jackson, 2000

Global Tropical deciduous forestb

Tropical evergreen forestb

Tropical grassland/savannab

Bernoux et al.,
2002

Brazil Open Amazon forestc Oxisolsg

Dense Amazon forestc Oxisolsg

Amazon savannac Oxisolsg

Open Amazon forestc Ultisolsg

Dense Amazon forestc Ultisolsg

Amazon savannac Ultisolsg

Batjes and
Dijkshoorn, 1999

Amazon Cambisolsf

Ferralsolsf

Luvisolsf

Cerri et al., 2003 Amazon Open humid tropical forest with large a
number of palms

Ultisolsf

Rhoades et al.,
2000

Ecuador Old growth lower montane forest Andic
humitropept

de Koning et al.,
2003

Ecuador Secondary forest (7–30 yr after pasture) Tropepts, aqu
orthents, fluv
udalfs, udolls
psammentsg

Powers and
Schlesinger,
2002

Costa Rica See Powers (2004) See Powers (

Powers and
Veldkamp, 2005

Costa Rica See Powers (2004) See Powers (

Powers, 2004 Costa Rica Tropical wet forest transitioning to tropical
wet–cool transition forest at higher
elevationsa

Tropohumult
dystropepts,
dystrandepts

Veldkamp et al.,
2003

Costa Rica Tropical wet foresta Alluvial soils

Residual soil
Brown and Lugo,
1990

Puerto
Rico

Mature forest, wet life zonea Clayey, kaolin
isohyperther
typic
tropohumult

Virgin
Islands

Late secondary forest (100 yr), moist life
zonea

Fine, mixed,
isohyperther
typic argiust

Puerto
Rico

Mature forest, dry life zonea Clayey, mixe
isohyperther
lithic ustorth

Li et al., 2005 Puerto
Rico

Secondary forest (29 yr) Mixed isothe
tropohumult

Bashkin and
Binkley, 1998

Hawaii Wildland forest (never under management) Typic hydrud
of the Akaka
Kaiwiki serie

Hughes et al.,
1999

Mexico Tall evergreen secondary forest (6 mo to
50 yr)

Well-drained
coarse textur
vitric andoso

Brown et al.,
1993

Tropical
Asia

Tropical forestd

Zhong and Zhao,
2001

Tropical
and
subtropical
China

Vegetation categoriese: coniferous forest,
broad-leaf forest, bush and coppice forest,
grassland and savannah, meadow and
herbaceous swamp, agricultural land

Batjes, 2001 Senegal Forest Orthic ferras
Plinthic ferra
units (Fig. 6a–d). This might relate to subsoil properties such as the
high clay content (Table 2) that predominantly consists of expandable
smectite minerals, which show a higher SOC stabilization effect than
0–5 0–10 0–20 0–30 0–50 0–100 [cm
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Fig. 4. Variable importance of soil organic carbon predictions averaged over 20 Random
Forest runs for each depth interval and normalized to 100% (see Table 2 for terrain
parameter abbreviations).

Fig. 3. Iterative determination of best mtry values in terms of lowest Out-Of-Bag (the
proportion of the dataset which is not used in the bootstrap subset) normalized mean
square error (NMSEOOB) for the depth intervals of 0–10, 10–20, 20–30 and 30–50 cm.
Each boxplot represents 100 Random Forest runs. See Fig. 2 for details about boxplots.
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does kaolinite. Furthermore, the pale mottled (heavy) clay lower
subsoil with anaerobic soil condition possibly supports shallow
rooting trees, and hence leads to an accumulation of SOC near the
surface.With increasing depth Ava, Marron, and Harvard contained on
average more SOC. The latter soil units are silty clay soils (Table 2)
dominated by kaolinite. Except for the silty clay to clay texture of the
Lutz soil unit, the remaining soil units, Standley (smectite, kaolinite),
Wetmore (smectite, kaolinite), Poacher (kaolinite), and Hood (kaoli-
nite), are somewhat coarser soils with silty clay loam to clay loam
textures (Table 2). For the clayey Lutz soil unit, we only had one
observation, which in this particular profile is more similar to the
Wetmore unit with silty clay loam textured lower subsoil. These
results suggest that clay and SOC stock are positively correlated and
that clay content is more important than clay mineralogy for
stabilizing SOC, as was also observed by Wattel-Koekkoek et al.
(2001). Furthermore, the deeply weathered Ava and Harvard are on
relatively flat terrain with limited erosion, which supports SOC
accumulation. Nonetheless, Marron, situated on the steep sideslopes
of the main plateau, contains relatively more SOC. There are two
explanations concerning the relatively high SOC stocks of the Marron
soil unit: First, Marron is enriched by erosion products originating
from the Ava soil unit of the andesite plateau and second, decom-
position rates on the sideslopes of the plateau are reduced because of
higher soil water contents supplied through subsurface throughflow
from the main plateau (Daws et al., 2002).

Considering soil color as integrated in the soil mapping units
(Table 2), we could not determine a direct relationship with SOC
Notes to Table 4:
aHoldridge life zone classification system.
bBiome classification based on Whittaker (1975) and Jackson et al. (1997).
cModified vegetation categories based on the vegetation map of Brazil (IBGE, 1988).
dVegetation map of continental tropical Asia (Food and Agriculture, 1989, K.D. Singh, FAO, p
reported by Collins et al., 1991, obtained from the World Conservation Monitoring Centre (W
eModified land use classification based on the Vegetation Map of the People's Republic of C
fFAO World Reference Base for Soil Resources (WRB).
gU.S. Soil Taxonomy.
hLa Selva convention (both groups are Typic Haploperox in U.S. Soil Taxonomy).
distribution. This might indicate high contents of hematite, which
cover the dark appearance of humic substances.

Geology, an approximation of lithology on BCI, was a relatively weak
predictor for SOC prediction in the subsoil (Section 3.2.3). The reason for
this could be twofold: Firstly, lithology differs only slightly within the
geological formation with mostly andesitic basaltic rock compositions
and to a lesser extent foraminiferal limestone. Secondly, geology is
incorporated into the spatial extend of soil mapping units, which
perhaps more appropriately delineate variations in parent material.

Forest history showed only weak predictive power in the upper soil
layers, while below 30 cm it was entirely irrelevant. One could assume
that the impactof historical (N100years ago) landuseon thedistribution
of SOC has faded with forest succession. Brown and Lugo (1990) report
that recovery of soil OM takes about 50 years of forest succession.

Finally, we spatially calculated the cumulative SOC stock up to a
depth of 30 cm (Fig. 7). In contrast to the traditional approaches where
mean SOC stocks were linked to soil map units, we provided a more
appropriate estimation of the SOC stock on BCI, accounting for within
soil unit variability of SOC stocks. We present spatial SOC estimates up
to a depth of 30 cm to facilitate comparison to other studies, as this
depth interval has often been used for SOC estimates. The map (Fig. 7)
illustrates both, clear catenary SOC patterns as well as the importance
of soil texture.

The data ranges of the predicted SOC maps are narrower than
those of the pre-processed datasets used for modeling (Section 2.3.;
Fig. 2), which is, however, to be expected due to the smoothing effect
of the models which tend to predict mean values more often as model
accuracy is low. This smoothing effect, however, reduces both the local
ers. comm. 1990); A digital map of the forest areas for insular Asian countries
CMC), Cambridge, England.

hina (1:4 M) (Hou, 1982).



Table 5
Model performance from 100 Random Forest runs

0–10 cm 10–20 cm 20–30 cm 30–50 cm

MSEOOB Min 2.91 0.30 0.17 0.11
Med 2.96 0.31 0.17 0.11
Max 3.00 0.32 0.18 0.11

RMSEOOB Min 1.71 0.55 0.41 0.33
Med 1.72 0.56 0.41 0.33
Max 1.73 0.57 0.42 0.33

NMSEOOB Min 0.93 0.75 0.82 0.88
Med 0.94 0.77 0.83 0.9
Max 0.96 0.78 0.85 0.91

MSEOOB: Out-Of-Bag mean square error.
RMSEOOB: Out-Of-Bag root mean square error.
NMSEOOB: Out-Of-Bag normalized mean square error.
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variations as well as the effect of random errors, and therefore
facilitates the identification of general spatial SOC patterns.

Plant biomass is the main source of OM input to soil. Thus, actual
forest composition and structure may be more significant than forest
history for making spatial predictions of SOC stocks. However,
Fig. 5. Soil organic carbon concentrations [%] superimposed on soil units (see Table 1 for soil u
individual trees possibly drown general forest patterns. Therefore,
representations with high spatial resolution such as provided by
multi- or hyperspectral remote sensing data are necessary in order to
characterize actual forest composition, which might prove powerful
for spatial prediction of soil properties such as SOC. Regarding the
latter possibility as well as the widespread availability of digital
elevation data, digital SOC mapping could be applied to larger areas,
helping to refine the resolution of spatial SOC estimates.

4. Conclusion

A large part of the general spatial patterns in SOC variations on
Barro Colorado Island in the Panama Canal could be continuously
predicted by using the digital soil mapping approach.

In contrast to traditional SOC mapping approaches, where mean
SOC concentrations and stocks are spatially linked to soil or vegetation
units, the variability of SOC within these units was predicted by
integrating empirically derived relationships between SOC and soil
forming factors such as topographical (terrain attributes), pedological,
lithological, and biological (forest history) attributes into the digital
soil mapping framework.
nit abbreviations) in depth intervals a) 0–10 cm, b) 10–20 cm, c) 20–30 cm, d) 30–50 cm.



Fig. 6. Soil organic carbon stocks [Mg ha−1] superimposed on soil units (see Table 1 for soil unit abbreviations) in depth intervals a) 0–10 cm, b) 10–20 cm, c) 20–30 cm, d) 30–50 cm.
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As a modeling method we applied Random Forest (RF), consisting
of an ensemble of CART-like trees, which has proven to be a powerful
modeling approach for the spatial prediction of SOC. In order to
improve prediction results, the mtry parameter settings of the RF
algorithm was tested in more detail, revealing that default settings
were generally a good choice. Knowledge of soil processes and
landscape relationships was drawn from both variable importance
measures implemented in RF as well as spatial visualizations of the
prediction results. These results indicate that:

– The SOC patterns strongly follow the catena definition of soil
properties distribution showing decreasing SOC concentrations
and stocks in the sequence of toeslopesNridgesNmidslopes.

– In the subsoil, soil units, which represent a generalization of soil
and geophysical properties, were most important for SOC
concentrations and stocks prediction.

– Neither geology nor forest history were important for SOC
concentrations and stocks prediction based on the data available.

In this study we produced a more accurate spatial SOC concentra-
tion and stock estimation, which can be used for both understanding
the role of tropical soils in the global carbon cycle as well as the
incorporation of small scale spatial variations of SOC in future
environmental process modeling on BCI.
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