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Summary

The general linear model encompasses statistical methods such as regression and analysis of variance

(ANOVA) which are commonly used by soil scientists. The standard ordinary least squares (OLS) method

for estimating the parameters of the general linear model is a design-based method that requires that the

data have been collected according to an appropriate randomized sample design. Soil data are often

obtained by systematic sampling on transects or grids, so OLS methods are not appropriate.

Parameters of the general linear model can be estimated from systematically sampled data by model-

based methods. Parameters of a model of the covariance structure of the error are estimated, then used to

estimate the remaining parameters of the model with known variance. Residual maximum likelihood

(REML) is the best way to estimate the variance parameters since it is unbiased. We present the REML

solution to this problem. We then demonstrate how REML can be used to estimate parameters for

regression and ANOVA-type models using data from two systematic surveys of soil.

We compare an efficient, gradient-based implementation of REML (ASReml) with an implementation

that uses simulated annealing. In general the results were very similar; where they differed the error

covariance model had a spherical variogram function which can have local optima in its likelihood

function. The simulated annealing results were better than the gradient method in this case because

simulated annealing is good at escaping local optima.

Introduction

A common task for the soil scientist is to make inferences

about soil properties in a region (e.g. to estimate regional

means, to compare means between subregions such as soil

map units or to fit a regression line for predicting a property

from a readily measured variable). In order to do this we must

sample the soil, and when the property of interest has been

determined for each sample unit make an appropriate statis-

tical analysis. Linear models are commonly used for this pur-

pose. As we discuss below in more detail, these include familiar

statistical analyses such as linear regression and the analysis of

variance. There are two general methods for fitting these mod-

els and making inferences with them. These are ordinary least

squares and model-based methods. In this paper we draw the

attention of soil scientists to circumstances in which the ordin-

ary least squares approach should not be used, and describe

and exemplify model-based analysis.

Ordinary least squares

Ordinary least squares methods form the cornerstone of most

introductory statistics texts and courses for environmental

scientists. They are widely used in soil science, but not always

appropriately. The methods are not appropriate unless the

data have been collected by design-based sampling in which

any possible sample unit is a member of an underlying popula-

tion. The whole population constitutes all the soil in the region

of interest. Since sample units are generally very small by

comparison with the region we usually assume that the popu-

lation is infinite. The aim of sampling and inference in the

design-based approach is to obtain estimates of the underlying

parameters of the population. The key idea is that the prob-

ability that a particular sample unit is included in the sample is

determined by the sample design and so is known (de Gruijter

& ter Braak, 1990; Papritz & Webster, 1995). Simple random

sampling and stratified random sampling are well-known
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examples of the design. In the former all sample units are

selected at random and independently of each other. In the

latter sample units are selected at random and independently

within each stratum. This allows us to proceed on the assump-

tion that the sample data are independent random variables

regardless of any underlying spatial pattern in the variable

(de Gruijter & ter Braak, 1990). This assumption allows us

to use ordinary least squares for estimation and inference.

Such inference is generally done with the general linear

model. This has the form

y ¼ Xb þ e; ð1Þ

where y is an n� 1 vector of observed values of a soil variable

y, X is an n� p ‘design matrix’ of explanatory variables, b is a

p� 1 vector of model coefficients, and e is an n� 1 vector of

errors. In ordinary least squares we assume that e�N (0, �2I),

i.e. since I is the identity matrix, that the errors are inde-

pendently and identically distributed (iid) random variables

of mean zero and variance �2.

If the first column of X is a vector of 1s and columns 2 to p

contain observations of p� 1 continuous variables then Equa-

tion (1) is equivalent to the multiple linear regression with the

elements of b equal to the regression coefficients. This model

may be used to predict the variable y from measurements of

more rapidly or cheaply measured variables, as in the widely

used pedotransfer functions. Webster (1997) has discussed

regression in more detail and explained the limited circum-

stances in which it is appropriate.

The design matrix may contain p dummy variables or indi-

cators, each corresponding to one of a set of p comprehensive,

mutually exclusive classes (such as soil map units or land use

classes). In this case Equation (1) is equivalent to the one-way

analysis of variance (ANOVA) model. This model may be used

to make inferences about the differences between the classes,

and to derive predictors for use at sites within the classes where

the classes are, for example, soil map units or physiographic

classes.

Continuous predictors and indicators may be combined in a

single design matrix to give more complex models.

Under the assumption that the variables in e are random

and iid, an ordinary least squares (OLS) estimate of b is

bbb ¼ XTX
� ��1

XTy; ð2Þ

with C, the covariance matrix of the coefficients, estimated

by

bCC ¼ b��2 XTX
� ��1

; ð3Þ

where b��2, the estimate of the error variance, is obtained by

b��2 ¼ 1

n� p
y� Xbbb� �T

y� Xbbb� �
: ð4Þ

In the design-based approach the justification of the assump-

tion that the errors are mutually independent is based on

the sample design, in which units are selected at random and

independent of each other. If the error variables are from a

normally distributed process then the OLS estimate of the

model coefficients in Equation (2) is equivalent to the max-

imum likelihood estimate. An explanation of the derivation of

the OLS estimator of b and its relation to the maximum like-

lihood estimator is given in the Appendix.

Model-based analysis

Model-based analysis is an alternative to OLS. In model-based

analysis (exemplified by geostatistics) we assume that the vari-

able is a realization of a random process. In geostatistics the

process is distributed in a space of one, two or three dimen-

sions and is the random function Z(x). The actual value of the

variable at a particular location, z(x), is a realization of this

random function. For model-based inference we must postu-

late an underlying model. Usually this model describes the

spatial dependence of values of a realization of the random

function at different locations in terms of the spatial separ-

ation between the locations. This is done on the basis of know-

ledge and experience, and evidence from the data. We must

also make some assumptions about the model, e.g. that the

random function is ergodic, or second-order stationary or

intrinsically stationary (see Webster, 2000).

The model provides the basis for treating our observations

as outcomes of random variables with particular properties.

There is no reason in model-based sampling and analysis why

samples should be drawn at random and independently of

each other, and they usually are not. This is because we do

not rely on the sampling to justify treating sample units as

independent. We specifically do not treat the units as independ-

ent, but rather we assume that they exhibit a spatial depend-

ence that is characterized by the model. When we make

estimates and inferences from observations in model-based

analysis we do so on the basis of the model that describes

this spatial structure.

When we have not sampled with an appropriate randomized

design we must use a model-based method for analysis, and we

may not use OLS. If we did use OLS to analyse such data our

estimates of the parameters in b are unbiased, but their vari-

ance is not obtained correctly with Equation (3). Systematic

sampling, by definition, does not give rise to independent

observations. For a specified sampling scheme (e.g. sampling

on a square grid with 100-m intervals) once the location of the

origin of the grid and its orientation are determined, then all

the sample points have been specified. While there may be

good reasons for randomizing the position of the origin and

the orientation of the grid (to avoid biases) the sample design

no longer allows us to treat our data as independently drawn,

as if in design-based sampling.

This is an important point, because all too often investiga-

tors analyse systematically sampled data with OLS methods,

as if the units had been drawn independently and at random.
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Soil is often sampled systematically on grids or transects in

survey and there are good reasons why this is so. In recon-

naissance studies of a new region it is rational to sample

regularly on transects since it covers the range of environmen-

tal variation efficiently (Brink et al., 1982), as well as being

simple to implement (Cochran, 1977). Such transects may

generate data that we wish to explore using linear modelling

to decide, for example, whether regression of observed soil

properties on remote sensor data gives adequate predictions

in the particular landscape, or whether particular physio-

graphic units differ significantly with respect to soil properties.

As another example, data might have been collected with the

primary aim of mapping a variable by kriging, and the appli-

cation of linear modelling arises subsequently, or is of second-

ary importance. Given the cost of field sampling and soil

analysis we should make full use of the data that accrue.

Model-based analyses should therefore be used to analyse

data from systematic samples, but they may also be used to

analyse data from randomized samples since this can bring

gains in efficiency if there is spatial dependence between the

sample points. This is well established in the analysis of

designed experiments (Gilmour et al., 1997).

Here we draw the attention of soil scientists to the model-

based methods that exist for fitting general linear models to

data. In particular we discuss the fitting of these models by

residual maximum likelihood (REML). There is a rich litera-

ture on model-based analysis of designed experiments (e.g.

Gilmour et al., 1997), but rather less on analysis of sample

data where the primary objective is not geostatistical mapping.

Below we describe how general linear models with a model of

the spatial dependence of the error variation are fitted using

REML. In a subsequent section we demonstrate the method

using some data on soil.

Theory

In this paper we treat the combined effects of all sources of

variation in y that are not accounted for by the fixed effects in

b as a random variate h, so

y ¼ Xb þ h: ð5Þ

By contrast to the ordinary least squares case, Equation (1),

we do not assume that the elements of h are iid, but rather we

specify h�N (0,V). The matrix V is a variance–covariance

matrix of the error variables. Our model-based analysis con-

sists in finding an appropriate parametric form for this matrix,

estimating these parameters and then using the estimate of V

to obtain an estimate of b.

We assume that the covariance matrix V is positive definite,

that is to say its structure implies that all combinations of the n

variables will have a positive variance. In the case of spatial

variables we may usefully assume that the error is a second-

order stationary regionalized variable, and so that the struc-

ture of V is determined entirely by the spatial distribution of

the sample sites. Thus

Vi ; j ¼ C xi � xj
� �

; ð6Þ

where C is a covariance function of the vector xi� xj, the separ-

ation (lag) between observations at xi and xj. In this discussion

we simplify further by assuming thatVi , j depends only on the lag

distance, and not on the direction (i.e. that the variation is

isotropic). When this assumption is not tenable then a more

complex covariance function can describe dependence of the

covariance on both the lag distance and the direction.

The covariance function must be an authorized function so

that V is always positive definite. When the functional form of

C has been chosen the covariance matrix may then be char-

acterized by a vector q of q variance parameters including the

variance, �2, and additional parameters that describe the spa-

tial dependence. As an example, the isotropic exponential

covariance function is

Vi ; j ¼ �2s exp � jxi � xj j
a

� �
; i 6¼ j

�2; i ¼ j;

ð7Þ

where jxi� xjj denotes the (scalar) lag distance between the

two locations, a is a distance parameter, and s is a second

parameter, the spatial dependence, i.e. the proportion of the

variance that has a spatial structure as defined by the expo-

nential function. In geostatistical terms �2(1� s) is equal to the

nugget variance. A variable with a covariance function defined

in Equation (7) has the familiar exponential variogram

� jxi � xj j
� �

¼ c0 þ c 1 � exp � jxi � xj j
a

� �� 	
; ð8Þ

where c0 and c are the nugget and spatially structured variance

components, so that the spatial dependence is

s ¼ c

c0 þ c
: ð9Þ

By incorporating the nugget effect into our model of V we can

model sources of error that are spatially structured, but also

components of error that appear spatially uncorrelated (at

least at the scales of our sampling). In this case q, the number

of variance parameters in q, is 3, and they are �2, s and a, so

that q � [�2, s, a].

When a covariance matrix V has been estimated then we

may estimate b by inserting the estimate into the generalized

least squares equations:

bbb ¼ XTV�1X
� ��1

XTV�1y; ð10Þ

with the covariance matrix

bCC ¼ XTV�1X
� ��1

: ð11Þ

In summary, to fit the model in Equation (5) we first esti-

mate the variance subset of parameters q, and then use these to
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estimate the remaining parameters b, which are fixed effects.

Investigators sometimes do this in spatial modelling by finding

the OLS estimate of b using Equation (2), then estimating and

modelling a variogram of the residuals in the usual way. The

variogram of the OLS residuals then provides parameters in

q for matrix V. The problem with this approach is that the

variance parameters obtained are biased (Cressie, 1993).

Another approach is to find a maximum likelihood (ML)

estimate for the joint set of parameters b and q. If we can

assume that our data are from a normal distribution then the

log-likelihood function is

l b; qjyð Þ ¼ constant�1

2
logjVj�1

2
y�Xbð ÞTV�1 y�Xbð Þ; ð12Þ

where the elements of V depend on variance parameters. This

is discussed in more detail in the Appendix. Estimates of all the

parameters are found that maximize this likelihood function.

Cook & Pocock (1983) and Mardia & Marshall (1984) describe

this procedure in the context of multiple linear regression. The

ML estimates of the variance parameters q are subject to bias,

however. The ML estimate of the variance depends on b,

the elements of which are called nuisance parameters in this

context. Stuart et al. (1999) point out that this dependence

introduces the bias. The ML estimate of a parameter that is

a function of another, i.e. �(�), is �(b��) where b�� is the ML

estimate of �. If b�� is unbiased then in general �(�) will be

biased since

E � b��ð Þ½ 
 6¼ � E b��½ 
ð Þ; ð13Þ

see Equation (18.28) of Stuart et al. (1999).

This bias could be avoided if the dependence of the par-

ameters q on the nuisance parameters in b could be removed.

One does this by defining a new likelihood function in which

the variance parameters q are variables but the likelihood is

conditional on the parameters in b. The parameters in q are

then estimated by maximization of this likelihood. We may

then compute the matrix V and insert it into the generalized

least squares equations, Equations (10) and (11), to obtain an

estimate of b. This is the basis of the method of residual

maximum likelihood (REML) introduced by Patterson &

Thompson (1971).

Smyth & Verbyla (1996) give an illuminating presentation

of REML for the linear model. One can interpret REML as

an exact conditional likelihood where the conditioning is on a

statistic wholly sufficient for b, i.e. it summarizes all the

information about the parameters b contained in the

data. The estimate of q obtained by maximizing this condi-

tional likelihood does not depend on the nuisance para-

meters. In the case of a general linear model a statistic t can

be defined:

t � DXTV�1y; ð14Þ

where D is any non-singular p� p matrix function of q. Thus

defined, t is completely sufficient for b. The REML estimate of

q maximizes the likelihood conditioned on t. Following Smyth

& Verbyla’s (1996) presentation, Stuart et al. (1999) present the

conditional log-likelihood function for the general linear

model as

l qj bbb; b� �
¼ constant � 1

2
log jVj � 1

2
log jXTV�1Xj

� 1

2
yTV�1 I�Qð Þy; ð15Þ

where

Q � X XTV�1X
� ��1

XTV�1: ð16Þ

Having found parameters q that maximize the conditional

log-likelihood, we may substitute the estimated covariance

matrix V into Equations (10) and (11) to obtain the REML

estimates of the parameters b and their covariance matrix.

Residual maximum likelihood is now widely used in applied

statistics when it is necessary to obtain unbiased estimates of

variance components and OLS estimation is not possible. One

such case is in the analysis of repeated measurements on a

single set of experimental subjects. Here the errors will have a

dependence induced by temporal autocorrelation. Webster &

Payne (2002) discussed how REML can be used in these con-

ditions, with an example from soil science.

Gilmour et al. (1995) present an algorithm for REML estima-

tion in mixed modelling problems such as we have presented

here. This is incorporated into the ASReml software (Gilmour

et al., 2002). This procedure uses a gradient method to find the

maximum log-likelihood, and is fast. Gradient methods can

have problems finding maximum log-likelihoods if the likeli-

hood function is not smooth since they may find and stick at

local optima and miss the global optimum. Spatial models with

a spherical variogram for the random error do not have smooth

likelihood functions (Warnes & Ripley, 1987). However, the

spherical model is very commonly used in geostatistics to

model bounded variograms which reach the sill variance at a

finite range. For this reason, while we use ASReml to analyse

our data in this paper, we also use a simulated annealing algo-

rithm to find solutions to the maximum log-likelihood and

compare its solutions to those from ASReml. Simulated anneal-

ing is a numerical method for optimization that is particularly

suitable for maximizing functions that do not vary smoothly in

parameter space, so it may be a suitable method to find REML

solutions with a spherical spatial model.

In the remainder of this paper we show how REML may be

used to estimate parameters of general linear models from data

obtained by systematic sampling of the soil.

Materials and methods

Data

Two sets of data are used here. The first was collected in the

Vale of the White Horse near Oxford in central England. The

second was collected in the Swiss Jura.
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Data set 1, Vale of the White Horse. These data were taken

from those published by Burrough (1969). They were collected

in his special Study Area 1, covering 1.26 km2 in the Vale of the

White Horse, central England (Burrough et al., 1971). Jarvis

(1973) surveyed and described the soils of the region. The soil

comprises surface- and ground-water gleys formed over drift

and solid parent materials – Lower Greensand, Gault Clay

(Cretaceous) and Kimmeridge Clay (Jurassic). The area was

sampled on a regular square grid, at 100-m intervals, with six

columns and 21 rows giving a total of 126 sample sites.

At each site the soil was allocated to a predefined class

(series) based on profile characteristics. Table 1 shows the

series names used by Burrough (1969), the changes to the

names or identifications reported by Burrough et al. (1971),

and the modern correlatives of the series and the soil sub-

groups to which they belong in the current classification of

the soils of England and Wales (Clayden & Hollis, 1984). We

have retained the original series names for this study.

Several soil properties were recorded in the field or deter-

mined later in the laboratory from a bulked sample. We use

data from the topsoil (defined as 0–18 cm), on clay content

(determined by hand texturing with a few laboratory determin-

ations for calibration), available potassium (Kav) and cation

exchange capacity (CEC). Linear modelling was used to

answer the question: What are the mean values of the proper-

ties within each soil series, and do these differ with respect to

each of these properties?

Since the data were collected on a systematic grid, these

questions cannot be answered correctly by OLS estimation.

Data set 2, Swiss Jura. These data are heavy metal concen-

trations in the topsoil of a region of the Swiss Jura, measured

by Atteia et al. (1994) and analysed by the authors (Atteia

et al., 1994; Webster et al., 1994; Goovaerts et al., 1997). Meas-

urements of the concentration of heavy metals in the soil were

made on small cores of soil to depth 25 cm at 214 sites on a

square grid of interval 250 m. Of the 214 data, four were

excluded by Atteia et al. (1994) because the values were sus-

pect. The land use and the underlying rock type was identified

at each grid site.

We extracted a subset of 100 data from these 210, which are

observations in eight columns of the original grid (excluding

one point that was the only observation in the subset belong-

ing to one of the rock types). The data on nickel and cobalt

concentration were chosen for analysis.

The questions to be answered by linear modelling with these

data are as follows.

1 What are the mean concentrations of the heavy metals in

soils over each rock type, and do the rock types differ with

respect to each of these properties?

2 Can cobalt concentration be predicted from nickel concen-

tration? We accept that in most surveys both these variables

would be measured, but the problem does exemplify a more

general one of how to predict one continuous variable from

another.

As with the data from the Vale of the White Horse, the sampling

was systematic and so the assumptions of OLS are not met.

Exploratory analysis

Table 2 lists the summary statistics for the soil variables, and

Figure 1 displays the histograms. The data on CEC showed

mild positive skew, which was removed by transformation to

square roots. The data on available potassium were strongly

positively skewed. Although they remain skewed after trans-

formation to natural logarithms, this appears to be due prin-

cipally to two outlying values. The log-transformed data were

used for further analysis, and the outliers were retained. The

concentrations of cobalt and nickel in the Jura soils show very

weak negative skew and do not require transformation.

Figure 2 shows classified post-plots of these data. In Figure

3(a) are the soil series (after Burrough, 1969) identified at each

sampling site in data set 1, and Figure 3(b) shows the rock type

identified at each sampling site from the Swiss Jura.

Estimating parameters of the linear model

As a preliminary step OLS estimates were made of model

parameters. The residuals from these models,

z ¼ y� Xbbb; ð17Þ

were then computed, and their variogram was estimated by

Matheron’s (1962) method of moments estimator:

Table 1 Soil series in Burrough’s Study Area 1 according to the original (Burrough, 1969) and revised (Burrough et al., 1971) classifications and

identifications, and the current correlatives and soil subgroups (Clayden & Hollis, 1984)

Series name

Burrough (1969) Burrough et al. (1971) Current correlative Current soil subgroup

Denchworth Denchworth Denchworth 7.12, Pelo-stagnogley

Fernham Shellingford Burlesdon 5.72, Stagnogleyic argillic brown earth

Fladbury Fladbury Fladbury 8.13, Pelo-alluvial gley

Mead Mead Thames 8.14, Pelo-calcareous alluvial gley

Uffington Kingston Kingston 7.11, Typical stagnogley

Model-based analysis of systematic samples 803
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�̂�ðhÞ ¼ 1

2N hð Þ
XN hð Þ

i¼1

fzðxiÞ � zðxi þ hÞg2; ð18Þ

where z(xi) is the residual at location xi, z(xiþ h) is the residual at

a location separated from xi by the lag distance h and there are

2N(h) pairs of residuals separated by the lag h. Note that we

defined the lag as a scalar, ignoring any directional dependence of

the covariance, because there were too few data to do otherwise.

The point estimates of the variogram were then plotted and

examined to see if there was evidence for non-stationarity and

Table 2 Summary statistics for raw and transformed soil variables

Clay /% Kav /mg kg�1 Kav /log(mg kg�1) CEC /cmole kg�1 CEC /
p

(cmole kg�1) Co /mg kg�1 Ni /mg kg�1

Mean 42.60 201.54 5.04 25.54 5.00 9.08 33.98

Median 42.00 145.00 4.98 24.00 4.90 9.56 34.52

Variance 52.95 72.12� 103 0.38 57.96 0.56 13.33 92.06

Skew 0.009 6.74 1.17 0.73 0.17 �0.22 �0.13
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to obtain a guess of the a priori variance, spatial dependence

and distance parameter of the error variable. These values

were simply used to initialize the REML estimation since we

know that the statistics of the OLS residuals will be biased.

The variance parameters of the specific general linear model

were then estimated by numerical minimization of the negative

log-residual likelihood function �l(qjbbb; b) with respect to q
where l(qjbbb; b) is defined in Equation (15). This was done

with the ASReml software, and secondly by the method of

simulated annealing (Kirkpatrick et al., 1983), which has been

used elsewhere to obtain REML estimates of spatial variance

parameters (Pardo-Igúzquiza, 1997).

A detailed discussion of simulated annealing is beyond the

scope of this paper; more information is given by Kirkpatrick

et al. (1983), Aarts & Korst (1989) and Press et al. (1992), but

an outline of the method is given below.

Simulated annealing proceeds by random perturbation of an

initial set of parameters with respect to which some objective
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function is minimized. Perturbations that reduce this function

are accepted, those that increase it are accepted or rejected

randomly where the probability of acceptance, pa, is deter-

mined by a function (the Metropolis criterion) that simulates

the statistical mechanics of energy states in a molten metal.

Thus, if the proposed change in the system results in a change

in the objective function from fi to fj, where fj> fi, then the

probability of acceptance of the change is

pa ¼ exp
fi � fj

�

� 	
; ð19Þ

where � is a parameter analogous to the temperature of the metal.

If the parameters are randomly perturbed many times at a

fixed temperature, with changes accepted or rejected according

to this criterion, then the system approaches a thermal equili-

brium in which the distribution of values of the objective function

is Boltzmann’s distribution (Aarts & Korst, 1989). In simulated

annealing the system is taken through many such sequences of

perturbations, with the temperature parameter reduced at the end

of each. To reduce the temperature reduces the probability of

acceptance of a change in the system which results in a given

increase in the objective function. The aim is to emulate the slow

cooling of a molten metal that will cause it to ‘anneal’, i.e. to

reach an energy state that is a global minimum – a regular

crystalline solid. The particular advantage of simulated annealing

as a method of optimization is that the Metropolis criterion

allows the system in effect to jump over a barrier that could

trap it at a solution that is only locally optimal. This is useful

for the minimization of negative log-likelihoods with spatial

covariance structures described by models such as the spherical

function in Equation (20) below, since these may have local

minima that can make other optimization methods non-robust

(Warnes & Ripley, 1987; Ripley, 1988; Mardia & Watkins, 1989).

In this analysis a ‘cooling schedule’ was defined following

Kirkpatrick et al. (1983). The initial temperature of the system,

�1, was chosen so that the proportion of proposed changes

accepted before the first reduction in temperature was in the

range 0.90–0.99 and the new temperature of the system �mþ1

after the mth cooling step is 	c�m where 	c¼ 0.95. The cooling

step took place after a fixed number of perturbations of each

parameter of the objective function. The algorithm kept track

of the objective function at the most recent 20 cooling steps,

and once the objective function had remained unchanged over

this interval the algorithm stopped.

The initial values of the parameters in q were given to start the

algorithm.Thesewere the a priori variance and the spatial depend-

ence and distance parameter for an exponential covariance func-

tion as described in Equation (7) above. The initial values were

obtained by visual inspection of the variogram of the OLS resi-

duals, but runs with other starting values were also tried to reduce

the risk that the eventual solution was just a local optimum.

Having obtained a solution for the exponential covariance func-

tion, the same procedure was followed with a spherical model:

Vi ; j ¼ �2s 1 � sph
jxi � xj j

a

� �� 	
; i 6¼ j

�2; i ¼ j;

ð20Þ

where

sph
jxi�xj j

a

� �
�

3
2

jxi�xj j
a

� �
� 1

2

jxi�xj j
a

� �3

; jxi�xj j�a

1 ; jxi�xj j>a

( )
: ð21Þ

2000

1500

1500 2000 2500 3000 3500 4000

1000

500

Argovian

Kimmeridgian

Sequanian

Quaternary

5500

5000

4500

4000

3500

3000

2500

(b) Rock types

Denchworth
Fernham
Fladbury
Mead
Uffington

2000

1800

1600

1400

1200

1000

800

600

400

0 100 200 300 400 500

200

0

(a) Soil series

Figure 3 (a) Soil series identifications at each sample site in data set 1.

(b) Rock type identified at each sample site in data set 2.
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The REML estimates of the parameters q were then selected

for that covariance model (spherical or exponential) for which

the negative log-residual likelihood was smaller. The vario-

gram was then plotted on the same graph as the point esti-

mates from the OLS residuals. Since the latter are biased the

two graphs are not necessarily similar, but this should reveal

any serious problems with the estimation.

We then obtained the REML estimates of the parameters b
and their covariance matrix by substituting the REML esti-

mate of V into Equations (10) and (11).

Inference

Having estimated the parameters of the linear model we may

wish to test for significance. The tests, in these case studies,

will be based on null hypotheses that are of the form either ‘all

soil series means are equal’ or ‘the regression coefficient is

equal to zero’. In the latter case the hypothesis can be tested

from the t ratio:

t ¼
b

b��

; ð22Þ

where b

 is the estimate of the regression coefficient and b��
 is

its standard error extracted from the covariance matrix of the

model parameters. This may be tested against Student’s t

statistic with n� p degrees of freedom.

In the case of the ANOVA-type model we may test null

hypotheses that particular contrasts or sets of contrasts

among the elements of b are zero. To do this we form a matrix

of contrasts, L, in which each row corresponds to a single

contrast. So, for example, to test the null hypothesis that the

means of the first two of five classes are equal (a single con-

trast), we set L� [1, �1, 0, 0, 0]. Under this null hypothesis

Lb ¼ 0. To test this we compute the Wald statistic:

Lbbb� �T

LbCCLT
� ��1

Lbbb� �
: ð23Þ

The central term is the inverse of the covariance matrix of the

contrast or contrasts in L. Under the null hypothesis this statistic

is distributed as �2 with degrees of freedom equal to the rank of

L. To test the null hypothesis that all elements of b are equal (i.e.

the class means in our example) L is a p� 1� p matrix, the rows

of which contain a set of linearly independent contrasts so that

the rank of L is p� 1. One such matrix (p¼ 5) is

1 �1 0 0 0
1 0 �1 0 0
1 0 0 �1 0
1 0 0 0 �1

2664
3775:

A comment is necessary on the plausibility of the null

hypotheses invoked in these tests of significance. Clay content

of the soil is closely linked to the definition of the soil series,

and so the null hypothesis that the means of the soil series are

equal is clearly wrong from the point of view of soil science

(Webster, 2001). Of course the linear modelling is still neces-

sary to estimate the mean value of the property within each

series and to attach confidence limits to it. In the case of the

other properties the question of whether the soil series differ

with respect to the property may be open, and the null hypoth-

esis is of scientific interest. For example, the available potas-

sium will depend in part on factors such as parent material and

clay mineralogy (closely linked to the series definition) but also

on farming activities and biological processes. If the latter

factors dominate then the series may be indistinguishable

with respect to this variable.

Results

Figure 4 shows point estimates of the variograms of the OLS

residuals for each of the models, and the (continuous) vario-

grams estimated by REML. In general the point estimates and

the continuous models are not very similar. This is not unex-

pected since the point estimates are determined from OLS

residuals and so will be more or less biased. Table 3(a–c) pre-

sents results for the REML estimates of all model parameters,

compared with those obtained by OLS. The Wald statistics

were computed for the OLS analysis – as (p� 1)� the variance

ratio – for comparison with those obtained by REML in the

case of the ANOVA-type analyses. One could compare the

regression models obtained by OLS and REML by comparing

the standard errors of the regression coefficients, and using the

t ratio to test the null hypothesis that the coefficient is zero.

Note that, in each case, the OLS analysis provided stronger

evidence against the null hypothesis than did REML. This will

reflect the assumption of the OLS estimation that all n data are

independent sources of information; the REML estimate

recognizes that, because of spatial dependence, we have rather

less information on which to base our inference. The effect of

modelling the spatial structure of the error is two-fold. First

the estimates of the error variance obtained by REML are

larger than the OLS estimates in all cases. Second, the data

are not all weighted equally in the computation of class means,

i.e. the elements of bbb in Equation (10). For example, a datum

in an isolated occurrence of one soil class in the sample will be

given more weight in the computation of the class mean than

would a datum surrounded by many sample sites within the

same class.

The difference between the inferences from OLS and REML

estimation depends on the strength of the spatial dependence

revealed by the REML analysis. In the case of the clay content,

compared between soil series in data set 1, the modelled spatial

covariance structure has a short range compared with the grid

interval, so the error at a location will be only weakly correlated

with the errors at the nearest neighbouring sites. As a result the

REML estimates of the class means and those obtained by OLS

are similar, and the differences between the Wald statistics are

smaller than for the other variables. Similarly in data set 2 the

autocorrelation of error in the ANOVA-type model for the
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obtained by REML for errors from general

linear models.

Table 3a Results for linear models fitted by OLS and REML. ANOVA-type models for soil data from the Vale of the White Horse

Variable Clay Kav
a CECa

Estimator OLS REMLb OLS REML OLS REML

SA ASR SA ASR SA ASR

b parameters (Class means)

Class

Denchworth 42.45 42.62 42.62 5.21 5.10 5.10 4.80 4.89 4.89

Fernham 24.33 23.29 23.30 4.78 4.90 4.90 3.31 3.39 3.39

Fladbury 47.05 46.60 46.60 4.84 4.97 4.97 5.65 5.49 5.49

Mead 36.00 36.63 36.64 5.06 4.99 4.99 5.15 5.05 5.05

Uffington 31.00 31.54 31.51 4.58 4.87 4.87 4.09 3.87 3.87

q parametersc

Variance 29.54 29.63 29.63 0.34 0.35 0.35 0.29 0.31 0.31

Spatial dependence – 1.00 0.95 – 0.70 0.70 – 0.71 0.71

Distance parameter /m – 149.2 151.5 – 314.4 314.4 – 322.2 322.3

Negative log-likelihood 271.59 268.80 268.81 2.69 �13.98 �13.98 �8.38 �23.07 �23.07

Wald statistic 83.0 81.7 81.6 12.9 1.75 1.76 120.24 78.7 78.6

P-value <0.001 <0.001 <0.001 0.012 0.782 0.780 <0.001 <0.001 <0.001

aThe results are for potassium concentrations transformed to their natural logarithms and for CEC transformed to its square root.
bSA denotes REML estimates obtained by simulated annealing and ASR the ASReml results.
cThe spherical model was selected in all cases – Equation (20).
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concentration of nickel in the soil is weaker than in the case of

cobalt – the distance parameter of the variogram is relatively

large but the spatial dependence ratio is small.

By contrast the error models for available potassium, CEC

(data set 1) and cobalt (data set 2) show more than half the

error variance spatially structured at medium to long dis-

tances. While the REML analysis still indicates that CEC

differs significantly between soil series and cobalt between

rock types, the evidence is weaker than in the OLS analysis.

In the case of the ANOVA-type model for available potas-

sium, the OLS analysis indicates a significant difference

between the soil series. However, the REML analysis provides

insufficient evidence against the null hypothesis. The series

means as estimated by REML are more similar than the

OLS estimates. This and the (slightly) smaller estimate of the

error variance results in a smaller Wald statistic.

The conclusion that the series do not differ with respect to

(transformed) available potassium is plausible, since farm

practice will have a larger effect on available potassium in

the soil than will the pedogenetic processes on which the series

are defined. Studies in the same region by random sampling to

compare concentrations of available potassium in the soil of

different physiographic units concluded that there was no

difference (Webster & Beckett, 1968).

The conclusions that nickel and cobalt differ significantly

between the rock types agrees with the conclusion of Webster

et al. (1994), from spatial analysis, that the long-range vari-

ation of these two variables is determined by geology. It is

therefore not surprising that there was a significant regression

of cobalt concentration on that of nickel. This significant

relationship might reflect various underlying factors. Its use-

fulness is independent of the scientific explanation since the

proper use for such a model is for prediction, i.e. for predicting

the cobalt concentration in soil samples from this same region

where only the concentration of nickel has been determined by

chemical analysis. It should not be mistaken for a functional

relation between the variables, which should be estimated in

other ways (Webster, 1997). Figure 5 displays the relation

Table 3b Results for linear models fitted by OLS and REML. ANOVA-type models for soil data from the Swiss Jura

Variable Cobalt Nickel

Estimator OLS REML OLS REML

SA ASR SA ASRa ASRb

b parameters (Class means)

Rock type

Argovian 5.86 7.08 7.06 11.82 13.02 11.87 13.02

Kimmeridgian 11.03 10.23 10.24 24.31 23.98 24.30 23.98

Sequanian 10.20 10.25 10.25 20.70 20.45 20.28 20.45

Quaternary 8.17 8.85 8.84 17.17 18.61 17.34 18.60

q parametersc

Variance 9.12 10.56 10.50 40.26 42.35 40.07 42.34

Spatial dependence – 0.52 0.52 – 0.21 0.08 0.21

Distance parameter /m – 1030 1028 – 1932 845 1942

Negative log-likelihood 160.4 156.7 156.7 231.7 229.1 231.3 229.1

Wald statistic 48.8 13.4 13.6 59.9 34.92 58.11 34.92

P-value <0.001 0.004 0.004 <0.001 <0.001 <0.001 <0.001

aThis solution was found from arbitrary initial values for the distance parameter (1500m) and spatial dependence (0.5).
bHere the initial values were at the solution obtained by simulated annealing.
cThe spherical model was selected in all cases – Equation (20).

Table 3c Results for linear models fitted by OLS and REML.

Regression-type model for predicting cobalt from nickel

Estimator OLS REML

SA ASR

b parameters

Constant 1.93 2.45 2.24

Regression coefficient 0.375 0.348 0.358

q parameters

Variance 4.46 4.64 4.45

Model type – Exponential Spherical

Spatial dependence – 0.46 0.55

Distance parameter /m – 342 453

Negative log-likelihood 128.9 125.5 126.9

Standard error of coefficient 0.027 0.029 0.028

t ratio 14.07 11.92 12.79

P-value <0.001 <0.001 <0.001
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between the two variables, with the OLS and REML regres-

sion lines of Co on Ni.

In almost all cases the ASReml and simulated annealing

REML estimates of the model parameters are very close or

identical. An exception was in the analysis of the data on

nickel compared between rock types. Here the ASReml pro-

gram converged to a solution with a negative log-likelihood as

small as the simulated annealing solution only when it was

initiated from that solution. Initiating it from elsewhere

resulted in solutions with a larger negative log-likelihood;

one such is shown in Table 3b. These poorer solutions had

small spatial dependence ratios, and so other parameter esti-

mates were quite close to the OLS solutions. This problem is

most likely due to the susceptibility of gradient-based minim-

ization to the non-smooth behaviour of log-likelihood func-

tions for models with a spherical spatial correlation structure.

Discussion and conclusions

Soil scientists using data from systematic samples should resist

the temptation to analyse them with off-the-shelf OLS proced-

ures such as ANOVA or regression. While OLS gives unbiased

estimates of the parameters of a linear model, these are less

efficiently estimated than by model-based methods, and the

variance of the parameters is not correctly known. In these

examples, using REML to estimate the error variance with an

appropriate spatial model gave larger estimates of the variance

and weaker evidence against the null hypothesis. In one case

the REML analysis accepted a null hypothesis for an analysis

where the OLS analysis provided evidence for rejection that

would conventionally be regarded as significant. The advan-

tage of REML over both OLS and ML estimation for system-

atically sampled data is that it provides unbiased estimates of

the variance parameters, and so a sound basis for attaching

confidence limits to estimates of model parameters. Since

REML is now readily available its use for the analysis of

systematically sampled data should become standard.

This study highlighted the possible problems of gradient

methods for finding the REML estimates of model parameters

when a spherical spatial covariance model is used. We have

shown that simulated annealing might be preferable when this

model is used, but it is much less efficient computationally.

When using the spherical model and a gradient method you

should compare the results of REML solutions from different

initial values of the model parameters. If the results are very

variable this indicates that local optima are causing problems.

While REML may be used to model the spatial covariance

in a general linear model, this does not necessarily solve all the

problems that a systematic sample might pose. If there is

systematic variation in the soil properties of interest then this

can be aliased with the systematic sampling, resulting in ser-

ious bias in the parameters, however they are estimated. Sys-

tematic variation in agricultural fields, for example, may arise

from historical ‘ridge and furrow’ patterns, and other soils

may exhibit systematic variation as in the gilgai patterns of

eastern Australia and the polygonal or longitudinal patterns

formed by ice wedges in periglacial conditions. Some of these

systematic effects are obvious, but others might be fully

revealed only after sophisticated analysis (e.g. McBratney &

Webster, 1981). When the scientist is aware of systematic

variation in the variables being studied systematic sampling

is not necessarily precluded, but care must be taken to avoid

bias. In particular, if the spatial frequency of the underlying

pattern is 
 then the spatial frequency of sampling in the

direction of any periodic variation must be larger than the

Nyquist frequency, 2
.
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Pardo-Igúzquiza, E. 1997. MLREML: A computer program for the

inference of spatial covariance parameters by maximum likelihood

and restricted maximum likelihood. Computers and Geosciences, 23,

153–162.

Patterson, H.D. & Thompson, R. 1971. Recovery of inter-block infor-

mation when block sizes are unequal. Biometrika, 58, 545–554.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. 1992.

Numerical Recipes (Fortran), 2nd edn. Cambridge University Press,

Cambridge.

Ripley, B.D. 1988. Statistical Inference for Spatial Processes. Cambridge

University Press, Cambridge.

Smyth, G.K. & Verbyla, A.P. 1996. A conditional likelihood approach

to residual maximum likelihood estimation in generalized linear

models. Journal of the Royal Statistical Society, Series B, 58,

565–572.

Stuart, A., Ord, J.K. & Arnold, S. 1999. Kendall’s Advanced Theory of

Statistics, Volume 2A: Classical Inference and the Linear Model, 6th

edn. Arnold, London.

Warnes, J.J. & Ripley, B.D. 1987. Problems with likelihood estimation

of covariance functions of spatial Gaussian processes. Biometrika,

74, 640–642.

Webster, R. 1997. Regression and functional relations. European Jour-

nal of Soil Science, 48, 557–566.

Webster, R. 2000. Is soil variation random? Geoderma, 97, 149–163.

Webster, R. 2001. Statistics to support soil research and their presen-

tation. European Journal of Soil Science, 52, 331–340.

Webster, R. & Beckett, P.H.T. 1968. Quality and usefulness of soil

maps. Nature, London, 219, 680–682.

Webster, R. & Payne, R.W. 2002. Analysing repeated measurements in

soil monitoring and experimentation. European Journal of Soil

Science, 53, 1–13.

Webster, R., Atteia, O. & Dubois, J.-P. 1994. Coregionalization of

trace metals in the soil in the Swiss Jura. European Journal of Soil

Science, 45, 205–218.

Model-based analysis of systematic samples 811

# 2004 British Society of Soil Science, European Journal of Soil Science, 55, 799–813



Appendix

Least squares, generalized least squares and maximum like-

lihood estimation of b in the general linear model

In the general linear model the n� 1 vector of observed values

y is fitted by the vector Xb. The vector y�Xb is therefore a

vector of errors. It represents a point in an n-dimensional

space. If the coefficients in b are unbiased then the expected

location of this point is at the origin.

The goodness of fit of a general linear model may be meas-

ured by the length of the error vector, its ‘norm’ in the usual

terms of vector algebra. The simplest norm is the Euclidean

distance, and the squared Euclidean norm of the error vector is

equal to the sum of squared errors over the n observations

used to fit the model. This may be written as

S ¼ y� Xbð ÞT y� Xbð Þ: ðA1Þ

The ordinary least squares criterion for the fit of b, due to

Gauss, is to minimize the squared Euclidean norm of the error

vector. Following the normal rules of matrix algebra Equation

(A1) may be expanded to

S ¼ yTy� 2yTXb þ bT
XTXb: ðA2Þ

The minimization of S with respect to b is achieved by finding

b so that the partial derivative of S with respect to b is zero.

Following the normal rules for evaluating derivatives with

respect to matrices (see, for example, Koch, 1988), we may

write

@

@b
S ¼ �2XTyþ 2XTXb: ðA3Þ

Substituting the OLS estimate bbb for b in Equation (A3) sets

the derivative to zero by definition, and so

bbb ¼ XTX
� ��1

XTy: ðA4Þ

If the errors are identically and independently distributed

(iid) then we may think of the error vector as drawn from a

population with a hyperspherical distribution around the ori-

gin (i.e. a cloud of vectors with the same distribution in all

directions from the origin). This assumption is implicit in the

use of the OLS criterion since this is based on the magnitude of

the vector y�Xb and not on its direction.

If the error terms are identically distributed with variance �2

but with a correlation matrix A with non-zero terms off the

diagonal (i.e. the errors are not independent) then the error

vector is drawn from a population with a hyperellipsoidal

shape, i.e. the cloud is elongated along a principal axis. Now

if we wish to use the vector y�Xb as a measure of the good-

ness of fit it is clear that we need to consider its direction as

well as its length. An error vector of Euclidean length d along

the principal axis of the distribution represents a better fit than

an error vector that has the same length but which is perpen-

dicular to the principal axis.

The solution to this problem is to use the generalized dis-

tance, described in standard texts on multivariate analysis. This

is an alternative to the Euclidean norm. In effect the generalized

norm defines an n-dimensional space within which error vectors

with variance–covariance matrix V have a hyperspherical dis-

tribution. The squared generalized length of the error vector is

Sg ¼ y� Xbð ÞTV�1 y� Xbð Þ; ðA5Þ

where V¼�2A. As with the ordinary least squares we may

write the partial derivative of the squared generalized distance

norm of the error vector with respect to the parameters in b.

This is

@

@b
Sg ¼ �2XTV�1yþ 2XTV�1Xb; ðA6Þ

and so the generalized least squares (GLS) estimate is obtained

by

bbb ¼ XTV�1X
� ��1

XTV�1y: ðA7Þ

The OLS and GLS criteria, while intuitively appealing, are

none the less somewhat arbitrary. A better theoretical founda-

tion for estimating the parameters of the general linear model

was provided by R.A. Fisher, with the likelihood concept

(Fisher, 1921). Consider y to be a random variate drawn

from some stochastic process with a probability density func-

tion G (yjz ), where z is a vector of the parameters of the

distribution. As a probability density function G is a function

of the variate y conditional on its parameters z . It has various

properties, for exampleZ
y2Y

G yjzð Þdy ¼ 1; ðA8Þ

where Y is the space of all possible variates y. The problem is

to obtain an estimate of the parameters z given a set of

observations in y. Fisher’s proposal was to consider G as a

function of the parameters z conditional on the observations,

and to estimate z by bzz that maximizes this function. He called

it the likelihood. While it is obtained from a probability den-

sity function, the likelihood is not a probability sinceZ
�2Z

G z jyð Þdy 6¼ 1; ðA9Þ

where Z is the space of all possible parameter vectors.

If we assume that y arises from an underlying general linear

model

y ¼ Xb þ h; ðA10Þ

where b is a p� 1 vector, and h is drawn from a multivariate

normal process, then the probability density function for y is

given by the multivariate normal probability density function:

1

2�ð Þ
p
2jVj

1
2

exp � 1

2
y� Xbð ÞTV�1 y� Xbð Þ

� 	
: ðA11Þ
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This may be thought of as a likelihood function conditional on y,

L(V, bjy). This likelihood function has the same general form as

Equation (A9). It is therefore a function of the parameters to be

estimated (in this case q and b), and is conditional on the observa-

tions, y. For convenience we usually work with the log-likelihood:

l V; bjyð Þ¼�p

2
log2�� log jVj�1

2
y�Xbð ÞTV�1 y�Xbð Þ: ðA12Þ

This log-likelihood function must be maximized with respect

to b in order to find the maximum likelihood (ML) estimate

bbb. Inspecting Equation (A12) we see immediately that its par-

tial derivative with respect to b will yield the same estimate

as by GLS in Equation (A7). Therefore the ML estimator, for

a model with a multivariate normal error vector, is equiva-

lent to the GLS estimator, and in turn this is equivalent to

the OLS estimator when the errors are iid. In fact there are

grounds for regarding an ML estimator as optimal even

when the errors cannot be assumed to be from a multivariate

normal process, that have been summarized elsewhere (e.g. Lark,

2000).
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