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Part 1: Regression kriging  

with a linear trend model 

 



trend, explanatory part 

𝑍 𝐬 = 𝑚 𝐬 + 𝜀(𝐬) 

dependent, target variable 

stochastic residual, unexplanatory 

part, can be spatially correlated! 

Unlike ordinary kriging, in regression kriging the trend is no longer 
constant but a function of ’explanatory’ variables, for example: 

𝑠𝑜𝑖𝑙 𝑐𝑎𝑟𝑏𝑜𝑛 𝐬 = 𝛽0 + 𝛽1 ∙ 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝐬 + 𝛽2 ∙ 𝑠𝑙𝑜𝑝𝑒 𝐬   + 𝛽3 ∙ 𝑁𝐷𝑉𝐼 𝐬  + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐬  

Regression kriging 



Linear regression 

• Statistical method for modelling the relationship between a 
response variable and one or more explanatory (predictor) 
variables 

 

https://onlinecourses.science.psu.edu/stat501/node/251 



Multiple linear regression 

 

• Advantages: 

- Easy interpretation 

- Assessment of prediction uncertainty is straightforward 

- Easy to implement 

- Computationally light 

 

• Parameter estimation with least squares, gives the best 
linear unbiased estimation. 

 



• Assumptions: 

- Linear relationship (positive/negative) between soil and 
environmental covariates, additive effects  

 

- Residuals  

• Independent 

• Constant variance (homoscedacity): often residuals are 
heteroscedastic: variance increases with fitted value  

• Normal distribution (transformation) 
 

- Covariates (predictors) are deterministic (assumed to be 
error free) and uncorrelated 
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Fitting a linear regression model in R 

• lm function (base package) 

• R example (meuse data; sp package) 

 

• Zinc 

• Covariates: distance to river, elevation, organic matter, soil 
class, flooding frequency class, lime class 

• For categorical covariates, at least one observation is 
required for each category 

 



Fitting a linear regression model in R 



Checking model assumptions 

• Transform: log, sqrt 

• Convert to categorical: quantile 
splitting 

R2=0.41 



Log-transform the Zinc content 



R2=0.55 

Checking model assumptions 

R2=0.64 



Log-transform the Zinc content 



Model selection 

• Selecting a statistical model from a set of candidate models; 
not trivial 
 

• Select the best (most parsimonious) model; Occam’s razor: 
“among competing hypotheses that predict equally well, the 
one with the fewest assumptions should be selected”. 
 

• Selection criterion: Akaike Information Criterion (AIC): 
goodness of fit of the model, penalty for use of variables 

 

AIC = -2ln(L) + 2k 
 

• The smaller the (absolute) AIC value the better. 



Stepwise selection in R 

• Use stepwise selection to fit a more parsimonious model 



Model selection: AIC 

• Compare models with AIC 



Model diagnostics – normal distribution 



Model diagnostics – constant variance 



Linear model: y = E(Y) + ε / ŷ = E(Y) 

Reliawiki.org 



Prediction uncertainty 

• Prediction uncertainty has two components: 

- Uncertainty about the model as result of noise in the 
data: residual variance 

- Uncertainty about the mean: standard error (or variance) 
of the mean 
 

• The prediction uncertainty (prediction error variance, 
standard error of prediction) is the sum of these 
components: 

𝑆𝐸𝑝𝑟𝑒𝑑 = 𝑠2 + 𝑆𝐸𝑚𝑒𝑎𝑛2 

 

• 90% prediction interval: 

𝑃𝐼(𝐬) = 𝑍 (𝐬) ± 1.645 × 𝑆𝐸𝑝𝑟𝑒𝑑(𝐬) 



Graphical 

SE of mean 

SE of model 

SE of prediction 

Mean: E[Y|X] 



Prediction uncertainty assessment in R 

𝑆𝐸𝑝𝑟𝑒𝑑 = 𝑠2 + 𝑆𝐸𝑚𝑒𝑎𝑛2 



1. select explanatory variables and fit 
regression model (estimate regression 
coefficients) 

2. compute residuals (by subtracting the fitted 
trend from the observations) at observation 
locations and compute from these a 
semivariogram 

3. apply the regression model to all 
unobserved locations (usually a grid) 

4. krige the residuals 

5. add up the results of steps 3 and 4 

Regression-kriging algorithm 



Regression-kriging in R 



Regression-kriging results 



Back-transformation 

• The kriging prediction of the Zinc example gives us the prediction 
on the log-scale.  

• For a log-transformed variable taking the exponent does not give 
the mean of the log-normally distribution (it gives the median). 

• Back-transformation of a log-transformed variable: 

exp(prediction + 0.5*prediction variance)  

• Back-transformation of prediction variance not trivial, depends on 
predicted value. Lark and Lapworth (2012) argue it is therefore not 
a good (independent) measure of prediction quality. 

• Quantify prediction uncertainty by the 90% prediction interval: 
- Lower boundary: exp(prediction – 1.645 * prediction standard deviation) 

- Upper boundary: exp(prediction + 1.645 * prediction standard deviation)  

 

Lark and Lapworth, 2012. Geodema 173-174, 231-240 



An example of back-transformation 



An example of back-transformation 

 



• Differ in how the trend is modelled 

• Regression-kriging: trend and residuals are modelled 
separately; uncertainty of the trend not accounted for by the 
prediction error variance (kriging variance) 

• External drift-kriging (universal kriging): trend and residuals 
are modelled simultaneously 

• RK violates the assumption of independent residuals 

• KED trend estimates are modelled taking into account spatial 
correlation 

- Iterative Generalized Least Squares 

- Residual Maximum Likelihood (REML); geoR package 

Lark and Cullis, 2004. European Journal of Soil Science 55(4), 799-813 

Lark et al., 2006. European Journal of Soil Science 57(6), 787-799 

Lark and Webster, 2006. Earth Surface Processes and Landforms 31, 862-874  

Regression-kriging vs. External drift-kriging 



An R example of KED 



An R example of KED 



 

 

Part 2: Regression kriging  

with random forests 

 



Classification and regression trees (CART) 

• Classification tree for categorical data; Regression tree for 
continuous data 

• Overcome limitations of classical (linear) model:  

- non-linear relationships;  
- n of covariates > n observations;  
- interactions of categorical covariates that result in sparse cell counts;  
- non-parametric;  
- can handle missing values 

• Recursive partitioning of the data based on binary splitting of 
the data using covariates 



Growing a tree 

Source: Hastie et al., 2009. The Elements of Statistical Learning 

Full Dataset 

Leaf 

• Evaluate all covariates for each 
split  

• Split is chosen so that a maximum 
reduction of the error is achieved. 
Each node is  more pure than its 
parent node. 

• Splitting process is repeated for 
next two nodes, etc. 

• Greedy algorithm 

• The prediction at a leaf is the 
mean value of the data points (RT) 
or the modal class (CT) 

 



Growing a tree in R 

• rpart, tree, party packages 

• Fitting a tree model to soil organic matter content 



Random Forests 

• Limitations of CART: 

- Trees are known to be instable: sensitive to small changes in learning 
data -> tree structure can be completely altered. Predictions of single 
trees show high variability. 

- Danger of over-fitting. 

• Can be avoided using ensemble methods: base prediction 
on a whole set of trees rather than a single tree 

• Ensemble methods use the fact that trees are unstable but 
on average produce the right result. 

• Random forests is such ensemble method: a forest of trees is 
grown; the prediction is an aggregation of the individual tree 
predictions. 

 

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm 



How does it work? 

• Random forests combine bootstrap aggregation (‘bagging’) 
with random selection of predictors. 

 

• Algorithm:  

- Draw a bootstrap sample:  

• random selection of 2/3 of the training data; repeat n times.  

- Grow an unpruned tree to each bootstrap sample 

• random predictor selection: for each split in each tree a random 
subset is selected from the predictor variables. The best split is 
chosen from among the selected predictors. 

- Predict new data by aggregating the predictions of the n trees. 

• Average for continuous variables 

• Majority vote for categorical variables. 
 

 



Out-Of-Bag (OOB) accuracy assessment 

• Random Forest comes with an internal accuracy assessment 
(based on cross-validation; no need to do a separate 
assessment). 
 

• The algorithm sets aside 1/3 of the training data for each 
tree grown (out-of-bag data). 

 

• OOB data can be used to asses prediction accuracy: 

- predict the data not in the bootstrap sample for each tree 

- Aggregate the OOB predictions (each data point will be OOB 
~36% of the times): mean (continuous data), majority vote 

(categorical data). 



Random Forests in R 

• randomForest package (party; cforest) 



R output 



Random forests residuals 

• randomForest returns predicted values of the input data 
based on out-of-bag samples. 

• residual = rf$predicted – rf$y 

 

 

 

 

 

 

 

• fit variogram, krige residuals, add RF predictions 



Variable importance 

• Ensembles  of trees are not easy to interpret: no such thing 
as an average tree; an individual tree does not tell much 

 

• Ensemble can reflect the potentially (complex) effect of a 
variable on the response -> assess the relevance of each 
variable over all trees of the ensemble 

 

• Variable importance plot: shows how much prediction 
error increases when the values of one predictor are 
permuted (break association with response) while all others 
are left unchanged 

 

• Permuted variable is used together with other variables to 
predict the response -> prediction accuracy will decrease 

 

 



Variable importance plot 



Be aware 

• No clear interpretation 

 

• Prediction uncertainty not easy to quantify 
(computationally intensive) 

 

• Spatial correlation cannot be accounted for 

 

• Bias in variable selection (Strobl et al. 2009) 

 

• Stability of the forest depends on ntree, mtry settings 



Tree-based methods: resources 



Machine Learning Algorithms 

• Machine Learning Algorithms for soil science 
data: R tutorial 

https://docs.google.com/presentation/d/1RhF9LYF_HvV3AAoll1qNqgq3mkGmR4WzrKvJ3vOPIwY/pub?start=false&loop=false&delayms=3000&slide=id.g14809f62b7_0_25
https://docs.google.com/presentation/d/1RhF9LYF_HvV3AAoll1qNqgq3mkGmR4WzrKvJ3vOPIwY/pub?start=false&loop=false&delayms=3000&slide=id.g14809f62b7_0_25
https://docs.google.com/presentation/d/1RhF9LYF_HvV3AAoll1qNqgq3mkGmR4WzrKvJ3vOPIwY/pub?start=false&loop=false&delayms=3000&slide=id.g14809f62b7_0_25
https://docs.google.com/presentation/d/1RhF9LYF_HvV3AAoll1qNqgq3mkGmR4WzrKvJ3vOPIwY/pub?start=false&loop=false&delayms=3000&slide=id.g14809f62b7_0_25


And now... 

let’s practice 


