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The 1:50,000 national soil survey of the Netherlands, completed in the early 1990s after more than three
decades of mapping, is gradually becoming outdated. Large-scale changes in land and water management
that took place after the field surveys have had a great impact on the soil. Especially oxidation of peat soils
has resulted in a substantial decline of these soils. The aim of this research was to update the national soil
map for the province of Drenthe (2680 km2) without additional fieldwork through digital soil mapping using
legacy soil data. Multinomial logistic regression was used to quantify the relationship between ancillary
variables and soil group. Special attention was given to model-building as this is perhaps the most crucial
step in digital soil mapping. A framework for building a logistic regression model was taken from the
literature and adapted for the purpose of soil mapping. The model-building process was guided by
pedological expert knowledge to ensure that the final regression model is not only statistically sound but also
pedologically plausible. We built separate models for the ten major map units, representing the main soil
groups, of the national soil map for the province of Drenthe. The calibrated models were used to estimate the
probability of occurrence of soil groups on a 25 m grid. Shannon entropy was used to quantify the uncertainty
of the updated soil map, and the updated soil map was validated by an independent probability sample. The
theoretical purity of the updated map was 67%. The estimated actual purity of the updated map, as assessed
by the validation sample, was 58%, which is 6% larger than the actual purity of the national soil map. The
discrepancy between theoretical and actual purity might be explained by the spatial clustering of the soil
profile observations used to calibrate the multinomial logistic regression models and by the age difference
between calibration and validation observations.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction
The 1:50,000 soil map is themajor source of soil information in the
Netherlands. It is used for a wide variety of purposes such as
agricultural and environmental policy making, nature and soil
conservation and archeological prospection. However, the soil map,
completed in the early 1990s after more than three decades of field
surveys, is gradually becoming outdated (De Vries and Brouwer, 2006;
Rosing et al., 2006). Large-scale changes in land and water manage-
ment that took place after the field surveys have had a great impact on
the soil. One of the most remarkable effects of human interventions in
the Dutch landscape is the decline of large areas of peat soils through
increased oxidation rates due to intensive tillage and lowering of
groundwater levels. A quick scan on the status of the map units with
thick peat soils (peat layerN40 cm) showed that 47% of the area
mapped as thick peat soils during the 1:50,000 national survey
changed into another soil type (Van Kekem et al., 2005). Finke et al.
Dynamics Group, P.O. Box 47,
82416; fax: +31 317 419000.

ll rights reserved.
(1996) mapped the thickness of the peat layer of peat soils for two
map sheets of the national soil map for the province of Drenthe
(800 km2), and compared the results with peat thickness according to
the soil map. They found that 82% of the thick peat soils had changed
into thin peat soils, and that 63% of the thin peat soils had changed
into mineral soils. Use of outdated soil information for environmental
research or policy making may lead to erroneous decisions.

Although the need for updating the soil map has been recognized
for a long time, the last update activities took place in the early
nineties. Four map sheets of the national soil map were updated
between 1988 and 1993. Brus et al. (1992) evaluated themerits of four
update strategies for soil maps. Budgetary reasons currently hamper
further map updates. As fieldwork is a major cost component in a
project on map updating (Finke, 2000), methods that reduce the
amount of fieldwork, such as used in digital soil mapping, are
potentially interesting for future update activities.

In digital soil mapping soil observations are related to readily
available, spatially exhaustive ancillary data. The relationships are
then extended across a survey area to predict soil at unvisited
locations (McBratney et al., 2003; Bui and Moran 2003). Such
methods also may have potentials in the Netherlands considering its
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data rich environment. The Dutch soil information system (DSIS)
contains soil profile descriptions and classifications at more than
260,000 locations. Most of these are located in areas where soil
surveys at scale 1:10,000 have been carried out. Besides this, an
extensive suite of spatially exhaustive environmental ancillary data is
available at 25 m resolution. The ancillary data were combined with
point observations to create maps of groundwater status for the sandy
soils of the Netherlands, using time series analysis and geostatistical
techniques (Finke et al., 2004). Brus et al. (2008) used over 8000 soil
point observations stored in the DSIS to estimate the probabilities of
occurrence of seven soil categories in the Netherlands. We hypothe-
size that existing, recent soil profile observations can be used to
update the peat and other map units of the national soil map.
Furthermore, we expect that the purity of the map units can be
increased by using high-resolution ancillary data to delineate
inclusions of soil classes other than the dominant soil class.

The objective of this paper is to update the national soil map for the
province of Drenthe without additional fieldwork by using legacy soil
data. A soil map update is urgent in Drenthe considering the large area
of peat soils, the extensive areal decline of these soils (Van Kekem et
al., 2005; De Vries and Brouwer, 2006) and the age of the existing soil
map: the soil survey in Drenthe took place between 1965 and 1988.
We explore the use of multinomial logistic regression (MLR) for digital
soil mapping. MLR is widely used for spatial modeling in land use and
ecology studies (Müller and Zeller, 2002; Rhemtulla et al., 2007; May
et al., 2008; Suring et al., 2008). However, only a few studies applied
MLR for digital soil mapping, see for instance Campling et al. (2002),
Bailey et al. (2003), Hengl et al. (2007a) and Debella-Gilo and
Etzelmüller (2009).

In this study, existing soil profile classifications in the DSIS are used
to calibrate an MLR-model for each of the ten major map units of the
national soil map of the province of Drenthe. With these models we
re-map the soil group within each map unit. Careful attention is given
to the model-building process, as this is perhaps the most crucial step
in the digital soil mapping process. A framework for building logistic
regression models is taken from the literature (Hosmer and
Lemeshow, 1989) and adapted for soil mapping. We illustrate this
framework for one of the peat map units. The purity of the updated
Fig. 1. The major landforms of the province of Drenthe. The inser
soil map is assessed by an independent probability sample and
compared to that of the existing soil map.

2. Methods

2.1. Study area

The province of Drenthe (2680 km2) is situated in the northeastern
part of the Netherlands between 52°12′ and 53°12′ northern latitude
and6°7′ and7°5′ eastern longitude (Fig.1). Altitude ranges between−1
and 30m above sea level. The landscape of Drenthe is dominated by the
gently west–east sloping till plateau and the Hunze valley that borders
the plateau in the East. Glacial till was deposited under the continental
ice sheet that covered the Northern Netherlands 160,000 years ago
during the Saalian ice age. Themost remarkable landscape feature of the
till plateau is theHondsrug, a straight, Northwest–Southeast oriented till
ridge. Meltwater incised the till plateau during the early Weichselian
(116–73 ka BP), forming large brook valley systems. The brook valleys
were partly filled with fluvial deposits in the mid Weichselian
(73-14.5 ka BP). A layer of coversand of up to 2m thick was deposited
on the till during the lateWeichselian (14.5–11.5 kaBP) Sediments in the
brook valleys were covered with fen peat during the early Holocene. At
the same time, oligotrophic peat started to form in depressions on the
plateau and in the Hunze valley and grew into highmoor bogs, which
eventually covered one third of Drenthe (Spek, 2004). During the
Middle Ages, drift-sand complexes formed on the plateau as a result of
the open field farming system. Between the 17th and mid 20th century
large-scale, systematic reclamation of the vast highmoor swamps took
place resulting in a completelyman-made landscape, the so-called peat-
colonial landscape. Fig. 1 shows the major landforms of Drenthe.

All soils of Drenthe were formed during the Holocene. Podzols
formed in poor coversand deposits on the plateau. In richer, more
loamy parent material, brown forest soils formed. Plaggen soils, a
result of the open field farming system (Pape, 1970; Spek, 2004),
surroundmedieval settlements on the plateau. Peat soils dominate the
centres of the brook valleys. Earth soils (soils with a humic topsoil
overlying the C-horizon) are found in the brook valley–plateau
transition zone. Vague soils (soils without pronounced signs of soil
t top left shows the location of Drenthe in the Netherlands.
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formation) are found in the drift-sand complexes and in the till of the
Hondsrug. Soils of the peat-colonial landscape are distinguished from
the peat soils of the brook valleys by their strong human disturbances
to large depth due to deep cultivation and their man-made topsoil, the
so-called peat-colonial topsoil.

2.2. Data sources

2.2.1. Soil data
The national soil map for Drenthe contains 96map units describing

61 soil types at the subgroup level of the Dutch soil classification
system (De Bakker and Schelling, 1989), and 35 associations. Because
it is practically unfeasible to build an MLR-model for a categorical
variable with 96 possible outcomes, we aggregated the 96 map units
into ten map units, representing the major soil groups (Fig. 2):

1. Thick peat soils (P) (25,000 ha): soils with a peaty (organic matter
contentN15%) surface horizon; at least 40 cm of peat within 80 cm
from the surface;

2. Thick peat soils with a mineral surface horizon (mP) (24,800 ha):
soils with at least 40 cm of peat within 80 cm from the surface,
and a sandy, clayey, or peat-colonial surface horizon less than
40 cm thick;

3. Thin peat soils (PY) (13,400 ha): soils with a peaty surface horizon;
at most 40 cm of peat within 80 cm from the surface;

4. Thin peat soils with amineral surface horizon (mPY) (36,000 ha): soils
with at most 40 cm of peat within 80 cm from the surface, and a
sandy, clayey or peat-colonial surface horizon less than 40 cm thick;

5. Brown forest soils (BF) (900 ha): soils with a B-horizon formed by
weathering of minerals and illuviation of moder humus;

6. Podzol soils (PZ) (93,000 ha): xeromorphic and hydromorphic
podzols;

7. Earth soils (E) (13,000 ha): hydromorphic soils with a 15–50 cm
thick humic A-horizon, overlying a sandy or loamy C-horizonwith
or without gleyic features;

8. Plaggen soils (PS) (17,000 ha): soils with an anthropogenic, humic
A-horizon thicker than 30 cm overlying a podzol or brown forest
soil; typical for the open fields on the Drenthe plateau;
Fig. 2. Soil data: aggregated soil map at scale 1:50,000 of Drenthe (left) and locations
9. Till soils (T) (3500 ha): soils with glacial till within 40 cm from the
surface;

10. Sandy vague soils (S) (5800 ha): These are sandy soils with a
humus-poor topsoil b30 cm thick; subsoil only shows initial or no
signs of soil formation.

Although some detail is lost by aggregating map units, the ten soil
groups still describe the major soil variation in Drenthe. We obtained
16,282 soil profile descriptions for Drenthe from the DSIS. Roughly
96% (15,580) of the soil profile observations are located in four areas
where 1:10,000 soil surveys were carried out between 1996 and 2005.
These areas cover 10% of the total area. The remaining 702 profile
observations, collected during various research projects, are scattered
across Drenthe (Fig. 2). Because of the variety of data sources, the
profile observations were collected with different sampling designs.
The sampling locations in the 1:10,000 survey areas were selected by
purposive sampling. The other locations were selected by both
purposive (n=434) and probability sampling (n=268).

The recorded soil types at the observation locations were
reclassified to the ten soil groups. Cross-tabulation of the field-
observed versus the mapped soil group showed that at 55% of the
observation locations the recorded soil group corresponds to the
soil group as depicted on the map. The podzol map unit is
the most pure map unit (78%) and the thin peat soils are the least
pure (PY: 19% and mPY: 30%). The latter shows the effect of oxidation
of the peat.

2.2.2. Environmental ancillary data
Twelve spatially exhaustive primary datasets were available

(Table 1). The polygon maps were converted to 25 m grids. The
DEM was used to derive four relative elevation maps using the local
mean elevation within search radii of 250, 500, 750 and 1000 m.
Groundwater table classes were grouped into three classes. Historic
land cover (HLC) was grouped into five classes and converted to a
25 m grid. The three recent land cover datasets (LC) were combined
into a land cover history map with five classes for the period 1997–
2003. The geomorphological units were grouped into 16 classes. The
paleogeography grid contained 12 classes. After preprocessing the
of the four 1:10,000 soil survey areas and the 702 soil profile observations (right).



Table 1
Available primary environmental ancillary data.

Dataset Description Resolution Reference

Digital elevation model Absolute elevation 25 m http://www.ahn.nl
Groundwater
Groundwater table class (GT) Seasonal fluctuation of phreatic water levels 1:50,000 (polygon) Finke (2000)
Groundwater dynamics class (GD) Updated GT map: quantitative set of parameters

describing groundwater dynamics
25 m Finke et al. (2004)

GD—mean highest water table (MHW) 25 m
GD—mean lowest water table (MLW) 25 m

Land cover
HLC Land cover in 1900 50 m Knol et al. (2004)
LC1997 Land cover in 1997 25 m http://www.lgn.nl
LC2000 Land cover in 2000 25 m
LC2003 Land cover in 2003 25 m

Paleogeography Reconstruction of the landscape of Drenthe by the
end of the early Middle Ages (ca. 1000 AD)

1:50,000 (polygon) Spek (2004)

Geomorphology Geomorphological units 1:50,000 (polygon) Koomen and Maas (2004)
Soil map (scale 1:50,000) Spatial distribution of soil classes 1:50,000 (polygon) Steur and Heijink (1991)
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primary datasets, ancillary data were grouped into eight groups: (1)
elevation, (2) relative elevation, (3) groundwater, (4) historic land
cover, (5) recent land cover, (6) paleogeography, (7) geomorphology,
and (8) soil.

2.3. Multinomial logistic regression

2.3.1. The logistic model
The logistic model belongs to the family of generalized linear

models and is used when the response variable is a categorical
variable. Suppose that variable Yi represents the observed soil group
at a sampling location, with i=1,…, n and n is the number of soil
groups in a survey area. In case n equals 2 and Y has outcomes Y1 and
Y2. Both the counts of Y1 and Y2 follow a binomial distribution. The
probability of occurrence of Y1 is π1 and that of Y2 is π2. Logistic
regression relates probability π1 to a set of predictors using the logit
link function:

logit π1ð Þ = ln
π1

π2

� �
= ln

π1

1− π1

� �
= x0β ð1Þ

where x is a vector of predictors, and β is a vector of model coefficients
that are typically estimated by maximum likelihood. Eq. (1) can be
rewritten as:

π1

1− π1
= exp x0βð Þ = exp ηð Þ: ð2Þ

The quotient in Eq. (2) is referred to as the odds. From Eq. (2)
follows that:

π1 =
exp ηð Þ

1 + exp ηð Þ : ð3Þ

The binomial logistic regression model is easily generalized to the
multinomial case. If there are n soil groups there are also n variables
Y1,…, Yn with corresponding probabilities of occurrence π1,…, πn.
Analogous to binomial logistic regression the odds π1/πn,…, πn−1/πn

are modelled by means of exp(η1),…, exp(ηn−1). From
Pn
i=1

πi = 1 it
follows that:

πi =
exp ηi

� �
exp η1

� �
+ exp η2

� �
+ N + exp ηn

� � ð4Þ

where ηn=0. This model ensures that all probabilities are in the
interval [0,1] and that the probabilities sum to 1.
2.3.2. Assessing model significance and contribution of predictors
The significance of the logistic regression model is assessed with

the likelihood ratio test. Central to this test is the deviance statistic,
which is defined as (Hosmer and Lemeshow, 1989):

D = − 2ln
likelihood fitted model

likelihood saturated model

� �
ð5Þ

where the quotient is the likelihood ratio. The larger the deviance D,
the poorer the fit of the fittedmodel compared to the saturatedmodel.
The likelihood ratio test compares two logistic models by assessing
the change in deviance due to inclusion of predictors (Hosmer and
Lemeshow, 1989):

G = D model without the predictorð Þ− D model with the predictorð Þ:
ð6Þ

G is the log-likelihood ratio statistic, which is chi-square dis-
tributed under the null hypothesis that the model coefficients are
zero, assuming independent and normally distributed residuals. The
likelihood ratio test is used to assess the significance of the overall
model by comparing the deviance of the intercept-only model with
the full model, and that of the individual predictors. Note that the
likelihood ratio test can only be used to compare nested models.

The significance of an individual model coefficient is assessed with
the Wald statistic, which is obtained by comparing the estimated
coefficient to an estimate of its standard error (Hosmer and Lemeshow,
1989):

W = β̂ = S Ê β̂
� �

: ð7Þ

The Wald statistic follows the standard normal distribution under
the null hypothesis that a model coefficient is zero. Important for the
interpretation of the logistic regression is the value of exp(β), the odds
ratio, which indicates the change in odds of an event resulting from a
one-unit change in the predictor.

2.4. Model-building

2.4.1. Pedological knowledge for regression modeling
Regression modeling is a popular data-driven method for

quantifying the relationship between soil and ancillary data (Thomp-
son and Kolka, 2005; Meersmans et al., 2008; Schulp and Veldkamp,
2008). Usually a set of predictors is derived from ancillary data, coef-
ficients are estimated for these predictors, followed by an evaluation
of the selected model on the basis of some statistical performance

http://www.ahn.nl
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criterion such as R2 or Mallows' Cp. The resulting regression model
might be statistically sound but can be pedologically questionable if
the selected predictors do not have a plausible relationship with the
soil variable based on knowledge of the soil–landscape system.

An alternative to data-driven approaches to digital soil mapping
are knowledge-driven approaches. It has become widely recognized
that tacit knowledge of the soil–landscape system provides valuable
information that should be integrated into the digital soil mapping
process (Heuvelink and Webster, 2001; McKenzie and Gallant, 2007;
Walter et al., 2007). Such knowledge can be used to build expert
systems for mapping soils (Cook et al., 1996; Zhu et al., 2001) or to
define a conceptual model of pedogenesis that forms the foundation
of a quantitative (statistical) model for digital soil mapping (McKenzie
and Ryan, 1999; McKenzie and Gallant, 2007). In case of regression
modeling, use of knowledge of the soil–landscape system should be
fully integrated throughout the process of model-building. Each step
of the process must be critically reviewed from statistical as well as
pedological perspectives. One should have confidence in the final
regression model, not only statistically but also pedologically.

2.4.2. Model-building strategy
Hosmer and Lemeshow (1989) provide a methodological frame-

work for building a binomial or multinomial logistic regression
models. We adopted and extended their approach for digital mapping
of multinomial, categorical soil variables. We describe now the eight
steps in this approach. The statistical package SPSS (SPSS Inc., 2006)
was used for model-building.

2.4.2.1. Definition of a conceptual model of pedogenesis. To ensure a
sound pedological basis of the regression model, a conceptual model
of pedogenesis is defined. This is an explicit, structured representation
of knowledge of the soil–landscape system of the survey area, based
on a review on soil development. The conceptual model identifies the
driving factors and processes controlling pedogenesis and soil spatial
distribution.

2.4.2.2. Collection of predictors from available environmental ancillary
data. In quantitative prediction models, the drivers of pedogenesis
are represented or proxied by predictors. The predictors are identified
and collected from available environmental ancillary data. The result
is a set of predictors, all of pedological importance, that are candidates
for the MLR-model.

2.4.2.3. Univariate analysis and selection of candidate predictors.
Selection of predictors for an MLR-model from the set of candidates
starts with a univariate analysis of each predictor. For categorical
predictors this involves cross-tabulation of the response variable
versus each predictor followed by the chi-square test of indepen-
dence. Attention must be paid to contingency tables with zero
frequency cells as these may cause numerical instability during
parameter estimation, which is marked by extrememodel coefficients
and associated standard errors (Hosmer and Lemeshow, 1989). The
analysis of the contingency tables is followed by the fit of a univariate
MLR-model for each predictor that showed at least a moderate level of
association with the response variable. Univariate MLR-models are
also fit for continuous predictors.

The estimated coefficient and odds ratio of each logit function of
the univariate MLR-models should be checked for pedological
consistency. Predictors that are significant in the univariate analysis
are selected for the next step. Hosmer and Lemeshow (1989) suggest
to retain predictors with p-valueb0.25. The large p-value used is
based on the work of Bendel and Afifi (1977) and Mickey and
Greenland (1989) who showed that the 0.05 level often fails to
identify predictors known to be important. Predictors that are only
weakly correlated with the response variable may become strong
predictors when taken together in the multivariate model. When
univariate analysis resulted in a very large set of candidate predic-
tors we selected from each variable group (Table 1) only the
predictors with the strongest association to the response variable, as
predictors within each group are expected to be strongly associated.

2.4.2.4. Multivariate analysis of selected candidate predictors. A
multicollinearity assessment is carried out to identify associated
predictors. Next, multivariate MLR-models are fitted, with the aim of
selecting one or more competing preliminary models. We used the
stepwise forward method for model selection with entry probability
0.20 and removal probability 0.25, as recommended by Lee and Koval
(1997). Selected MLR-models must be checked for numerical stability
and multicollinearity. Numerical problems can be solved by replacing
the predictor with another (associated) predictor that describes the
same soil forming process; by grouping the levels of the predictor; by
omitting the predictor from the model; or by omitting the outcome
class of the response variable that shows numerical instability (this
will induce bias in the predictions). Multivariate analysis of candidate
predictors might result in several competing MLR-models, especially
when some of the selected predictors are associated, as for each of
these predictors a separate model can be fitted.

2.4.2.5. Evaluation of adequacy of the multivariate model(s). The fit of
theMLR-model(s) is followed by verification of the importance of each
included predictor using the Wald statistic (Eq. (7)). When there are
competingMLR-models, then verification is donewith the best model.
Competing MLR-models that are not nested cannot be compared with
the likelihood ratio test but are compared with goodness-of-fit
measures. Assessing goodness-of-fit of logistic regression models is
not as straightforward as for linear regression models, and the
appropriateness of the various goodness-of-fit measures for logistic
regressionmodels is a subject of debate in the literature (Mittlböck and
Schemper, 1996; Hosmer et al., 1997; Menard, 2000). We used three
goodness-of-fit measures: Pearson chi-square statistic, classification
tables and theMcFadden-R2. The Pearson chi-square statistic indicates
howwell themodelfits the data. Hosmer and Lemeshow (1989) advise
caution when using this statistic for models containing continuous
predictors. The chi-square distribution then becomes an inadequate
approximation of the true distribution of the statistic. Therefore the p-
value for this statistic becomes meaningless, although the statistic
itself is a good measure of model adequacy (Hosmer et al., 1997): the
lower the statistic, the better the model fit. Classification tables were
used toderive the calibrationpurity. TheMcFadden-R2 (Menard, 2000)
measures the reduction inmaximized log-likelihood. It is conceptually
and mathematically close to the ordinary least squares R2.

Once an MLR-model is chosen from the alternatives, the included
predictors can be verified. Predictors that are not significant should be
deleted from the model one by one, starting with the least significant.
A newmodel is fitted each time a predictor is deleted and compared to
the old model with the log-likelihood ratio test. Careful attention
should be paid to predictors whose coefficient has changed markedly
after another predictor is removed, indicating that the deleted
predictor is a confounder of other predictors (Hosmer and Lemeshow,
1989). A strong confounder should be kept in the model, even when
the predictor is not significant. Next the odds ratios of the predictors
are checked for pedological consistency.

2.4.2.6. Checking the assumption of linearity in the logit. Logistic
regression assumes a linear relationship between continuous predictors
and the logit.We used the Box–Tidwell approach and logit graphs to test
this assumption (Hosmer and Lemeshow, 1989). The Box–Tidwell
approach adds the transformed predictor x ln(x) to the model, where x
is the value of the predictor. Statistical significance of this predictor
suggests non-linearity in the logit. We also used the logit graph
approach, which replaces the continuous predictor with a categorical
predictor with four levels using the quartiles as cut-points. The



316 B. Kempen et al. / Geoderma 151 (2009) 311–326
estimated coefficients of this predictor are plotted against themidpoints
of the quartiles. Non-linear plots indicate non-linearity in the logit. The
relationship shown by the graph should be pedologically plausible, as
before.

2.4.2.7. Checking for interactions between predictors. To checkwhether
interactions between predictors should be included in the MLR-model,
pairwise interactions are created for each possible combination of
predictors or only for those predictors that themodel-builder expects to
interact. We used the stepwise forward method to select interactions
from all possible combinations of predictors. Interactions are tested for
significance with the likelihood ratio test. Significant interactions are
included unless these are not pedologically plausible or cause numerical
instability during parameter estimation. Goodness-of-fit statistics are
used to check if the model fit improved.

2.4.2.8. Statistical and visual assessment of the final model. Statistical
assessment of the final MLR-model is based on the goodness-of-fit
measures as described in step 5. If the model is judged statistically
acceptable then the model is applied to create a preliminary soil map.
If unrealistic soil patterns are found the model should be adjusted.
This means a return to step 4 of the model-building framework.

2.5. Model application

Ten calibrated MLR-models, one for each map unit, were used to
estimate the probabilities of occurrence of the ten major soil groups on a
25mgrid. Thesoil groupwith the largestprobabilitywasused toconstruct
a predictionmap. The theoretical puritywas computed as themean of the
maximum probability at each grid cell of the prediction grid (Brus et al.,
2008). Prediction uncertainty was quantified by Shannon entropy:

Hz = −
Xny
i=1

π̂ zi; sð Þ lognz π̂ zi; sð Þ ð8Þ

where π̂(yi,s) is the estimated probability that random variable Z at
location s takes the value zi, and nz is the number of outcomes (Brus
et al., 2008). By using the logarithm with base nz the maximum
entropy is 1, which occurs when all outcomes have equal probability.
The minimum value for the entropy is 0, which occurs when there is
no uncertainty and one of the outcomes has probability 1. It should be
noted that the entropy indicates whether the predicted soil group has
a large probability, it does not indicate that the prediction itself is
correct. The accuracy of the predicted soil groups was validated with
an independent data set (Section 2.6).

2.6. Model validation

2.6.1. Sampling strategy
The results were validated with an independent, stratified simple

random sample (De Gruijter et al., 2006). Strata were obtained by
overlaying the aggregated national soil map, henceforth referred to as
the reference map, with a map depicting three regions that roughly
coincide with the major drainage basins and the areas with 1:10,000
soil maps. The latter map improves the spreading of the sample
locations over the study area and facilitates the separate estimation of
purity for the subareas with high and low density of calibration data.
This resulted in 34 strata. A total of 150 locations were allocated to the
strata in proportion to their area, with a minimum of two per stratum
to allow estimation of the sampling variance for each stratum. Loca-
tions where permissionwas denied or proved otherwise impossible to
sample were replaced with locations from a reserve list.

2.6.2. Statistical inference
Validation resulted in an indicator variable taking value 1 if the

mapped soil group equals the observed soil group and 0 else. The
estimated statistical parameter was the spatial mean of the indicator,
which corresponds to the fraction of the survey area that is correctly
mapped and is knownas the actual purity (or user's accuracy). The actual
purity was also estimated for the ten ‘soil strata’ (map units of reference
map) separately, and for the two ‘mapping-scale strata’ (1:50,000 and
1:10,000). The actual purity was estimated by (De Gruijter et al., 2006):

f̂ =
Xl

h=1

wh f̂h ð9Þ

wherewh is the weight (relative area) of stratum h, f̂h is the estimated
areal fraction of stratum h correctly classified, and l is the number of
strata. The stratum fractions were estimated by the fraction correctly
predicted locations in each stratum since the locations in each stratum
were selected by simple random sampling:

f̂h =
1
nh

Xnh

i=1

yi ð10Þ

where nh is the number of sampling locations in stratum h, and yi is the
indicator variable at sampling location i. Eqs. (9) and (10)were alsoused
to compare the predictive capabilities of the updated soil map and
reference map by substituting yi for di=yi

(u)−yi
(r), the difference

between the indicators for the updated (yi(u)) and for the reference
map (yi(r)). This variable can have values −1, 0, and 1 and is used to

estimate d̂ , which is themean difference in actual purity of the updated
and reference maps. Under the null hypothesis that the expected value

of the estimated mean difference is zero, d̂ follows approximately a

normal distribution with zero mean and variance Varðd̂Þ.
We used group ratio-estimators (De Gruijter et al., 2006) to

estimate the actual purity and sensitivity (or producer's accuracy) of
the map units on the updated soil map because the strata used in
random selection of the validation locations did not coincide with the
map units on the updated map. The actual purity of map unit k of the
updated soil map was estimated by:

p̂ kð Þ =

Pl
h=1

Ahy
kð Þ
h

Pl
h=1

Ahx
kð Þ
h

ð11Þ

where Ah is the area of stratum h, y h̅
(k) is the sample mean of indicator

yi,h
(k) taking value 1 if the mapped and observed soil group at sampling

location i equal soil group k and 0 else, and x h̅
(k) is the sample mean of

indicator xi,h(k) taking value 1 if themapped soil group equals soil group
k and 0 else. The sensitivity is defined as the fraction of the true area of
soil group k that is mapped as soil group k. The sensitivity of map unit
k of the updated soil map was estimated by:

ŝ kð Þ =

Pl
h=1

Ahy
kð Þ
h

Pl
h=1

Ahz
kð Þ
h

ð12Þ

where and z ̅h(k) is the sample average of the indicator zi,h(k) taking value
1 if the observed soil group equals soil group k and 0 else.

3. Results

3.1. Model-building

We describe the model-building process for map unit “thin peat
soils with a mineral surface horizon (mPY)” by applying the eight
steps described in Section 2.4.2. For the other nine map units we
followed a similar approach.
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3.1.1. Definition of a conceptual model of pedogenesis
Themap unitmPY (36,000 ha) is the second largest of Drenthe. The

national soil map subdivides this unit in iW, zW and kW, which have
different topsoils due to different soil forming processes. Map unit kW,
covering 200 ha in the northern tip of Drenthe, has a clayey topsoil that
is formed by deposition ofmarine clay onpeat in the brook valleys. The
topsoils of units iW (22,000 ha) and zW (14,000 ha) are formed by
anthropogenic processes. The spatial extent of iW is limited to the
peat-colonial landscape. The topsoil is formed by repetitive mixing of
the sand cover, applied after peat excavation,with peat remnants in the
subsoil. This reclamation method resulted in topsoils that are spatially
highly variable in thickness (15–40 cm) and organic matter content
(10–25%).Mapunit zW is found in small areaswithin the peat colonies,
along the edges of brook valleys or in depressions (pingo remnants) on
theDrenthe plateau. The sandy topsoil can be formedby (1) cultivation
byapplication of sand-richmanure, (2) leveling of the irregular surface
of the Drenthe plateau during agricultural reclamation, or (3) sand
application on the peaty surface to improve trafficability. The zW
topsoil is spatially less heterogeneous than the iW topsoil and its
organic matter content is on average 5–15%. All soils in map unit mPY
have a sandy subsoil that may contain a podzol, depending on the
position in the landscape. A podzol-B horizon in the subsoil is generally
found on higher positions.

The frequency distribution of observed soil groups in map unit
mPY shows that at only 30% of the locations a thin peat soil with a
mineral topsoil was found. The podzol is the most common observed
soil group (42%), which is the result of oxidation of the peat layer.
Oxidation rate depends on several factors. These include land use,
because oxidation rate is faster under arable land than under grass-
land or nature; groundwater level, because oxidation rate increases as
the groundwater level decreases; and peat type, because mesotrophic
peat is less resistant to oxidation than oligotrophic peat. Where peat
has disappeared, either a “podzol” (PZ) or an “earth soil” (E) is present
now. Soils of the peat colonies are better drained and under more
intensive agricultural use than peat soils in the brook valleys. We
therefore expect soils in the peat colonies to be more strongly affected
by oxidation than soils in the brook valleys.

Not all impurities in map unit mPY can be explained by peat
oxidation. Part of the inclusions were present from the beginning, due
to generalization errors. Confusion of soil groups close to boundaries
of map delineations is expected to be larger than in the centre of the
delineations due to the positional accuracy of the delineations. We
therefore assumed that the probability of occurrence of soil groups
within an impure map delineation is also governed by the soil groups
of adjacent map delineations and by soil groups that dominate the
direct neighbourhood of a location. Generalization errors are also
caused by the large short-scale variability of the soils in the peat
colonies, which cannot be adequately expressed at the 1:50,000 map
scale. Because of this variability “thin peat soils” (PY), “thin peat soil
with a mineral topsoil” (mPY), thick peat soils (P) or “thick peat soils
with a mineral topsoil” (mP) can all occur in areas smaller than the
minimum delineation size. Inclusion of podzols or earth soils can be
found at higher and drier positions in the peat colonies and brook
valleys, such as coversand ridges. These geomorphological features are
in general too small to be mapped at the 1:50,000 scale.

3.1.2. Collection of predictors from available environmental ancillary
data

The pedogenic processes and factors that cause inclusions of soil
groups other than the mPY soil group were represented by the set
predictor variables described below. This set comprises 46 predictors
(Table 2).

1. Land cover. The effect of land cover on peat oxidation is
represented by datasets “recent land cover” and “historic land
cover”. Five indicator predictors were derived from both datasets.
2. Groundwater. The effect of groundwater level on peat oxidation is
represented by datasets “GD”, “GT”, “GD_MHW”, and “GD_MLW”.
Three indicator predictors were derived from each dataset. An
ordinal categorical predictor with three levels was derived from
datasets GD and GT.

3. Peat type. Peat type is proxied by subsoil type as described by the
soil map (Finke et al., 1996). If a podzol-B horizon is present in the
subsoil then it was assumed that the peat is of oligotrophic origin
otherwise it was assumed that the peat is of mesotrophic origin.

4. Oxidation risk. Finke et al. (1996) mapped peat oxidation risk
(high-low) for two map sheets of the soil map of Drenthe by
combining data on groundwater and peat type. We created two
such risk predictors, one using groundwater data from the GT
data, and one using the groundwater data from the GD data.

5. Topsoil lithology. One indicator predictor was derived from the soil
map to represent the topsoil type.

6. Landscape. Information from the soil and geomorphology maps
was combined to delineate the peat-colonial landscape. The
paleogeography map was used to delineate the former highmoor
landscape and the brook valley system.

7. Elevation. Elevation was used to map out inclusions of soil groups
PZ and PY.

8. Relative elevation. Four relative elevation grids captured local
height variation to identify for example local depressions or
coversand ridges.

9. Proximity to boundary of map delineations. Two indicator maps
were generated from the soil map indicating whether a grid cell
within a mPY delineation fell into boundary zones with widths
125 and 250 m.

10. Neighbouring soil group. The soil group of the nearest neighbour-
ing delineationwas determined for each grid cell within map unit
mPY. The resulting map was recoded into two categorical maps:
one with two and one with three levels.

11. Dominant soil group. The dominant soil group within search radii
125, 250, and 500 mwas determined for each location within map
unitmPY, resulting in threemaps. Eachmapwas reclassified into two
categorical maps similar to the neighbouring soil group predictors.

3.1.3. Univariate analysis of candidate predictors
Our data set contained 2894 soil profile observations within map

unit mPY. Each of the ten soil groups is observed at least once in the
map unit. The soil groups “Brown Forest soils” and “Till soils” are
observed only three and two times, respectively. These two soil groups
were eliminated as outcome level because there were not enough
observations to fit the logit functions. This implies that the probability
of occurrence of these soil groups in map unit mPY was set to zero.

Each cross-tabulation of a categorical predictor with the response
variable resulted in a significant Pearson chi-square statistic. Further-
more, cross-tabulations showed that response outcome “Plaggen soil”
(17 observations) had zero cell frequencies for several predictors
(Table 2). To reduce the number of candidate predictors we selected
those with the strongest association to the response variable from
variable groups “groundwater”, “recent land cover”, “historic land
cover” and “soil map”. This selection resulted in 19 categorical and 5
continuous predictors (Table 2). A univariateMLR-modelwas fitted for
each of the selected predictors, with soil groupmPYas reference level.
The likelihood ratio test was significant for each univariate model,
indicating that all predictors are candidates for themultivariatemodel.
The odds ratios were generally in accordance with our knowledge on
the soil–landscape system.

3.1.4. Multivariate analysis of selected candidate predictors
A multicollinearity assessment confirmed the assumption that

predictors within variable groups are associated. Furthermore,
moderate and strong associations were found between predictors
from different groups (Table 2).



Table 2
Candidate predictors per variable group for MLR modeling for soil map unit mPY.

Variable group Description Codes/Values Predictor name Associated predictors of other groups

1 Elevation
Absolute elevation⁎ cm a.s.l. ELEV

2 Relative elevation
Search radius 250 m⁎ cm RELELEV250
Search radius 500 m⁎ cm RELELEV500
Search radius 750 m⁎ cm RELELEV750
Search radius 1000 m⁎ cm RELELEV1000

3 Groundwater
GD⁎a 1=Wet/2=Moist/3=Dry GD PEATOX_GD

PEATOX_GT
GD wet⁎a 1=Yes/0=No GD_W PEATOX_GD
GD moist 1=Yes/0=No GD_M
GD dry 1=Yes/0=No GD_D
GD_MHW wet 1=Yes/0=No MHW_W
GD_MHW moist 1=Yes/0=No MHW_M
GD_MHW dry 1=Yes/0=No MHW_D
GD_MLG wet 1=Yes/0=No MLG_W
GD_MLG moist 1=Yes/0=No MLG_M
GD_MLG dry 1=Yes/0=No MLG_D
GT⁎ 1=Wet/2=Moist/3=Dry GT PEATOX_GT
GT wet⁎ 1=Yes/0=No GT_W PEATOX_GT
GT moist 1=Yes/0=No GT_M
GT dry 1=Yes/0=No GT_D

4 Recent land cover, 1997–2003
Permanent grassland⁎ 1=Yes/0=No RLC_GR
Permanent cropland⁎ 1=Yes/0=No RLC_CR
Gras–crop rotation 1=Yes/0=No RLC_GRCR
Gras–crop rotation or cropland⁎ 1=Yes/0=No RLC_ROTCR
Nature 1=Yes/0=No RLC_NAT

5 Historic land cover, 1900
Grassland⁎ 1=Yes/0=No HLC_GR
Cropland 1=Yes/0=No HLC_CR
Heath⁎ 1=Yes/0=No HLC_HEATH
Forest 1=Yes/0=No HLC_FOR
Nature⁎ 1=Yes/0=No HLC_NAT

6 Paleogeography
Brook valley system⁎a 1=Yes/0=No BROOKVAL PEATTYPE
Former highmoor areas⁎ 1=Yes/0=No HIGHMOOR PEATTYPE

7 Geomorphology–soil map
Peat-colonial landscape⁎ 1=Yes/0=No SOILCOV

PEATCOL GT, GT_W
8 Soil map

Peat type⁎ 1=Oligotrophic PEATTYPE BROOKVAL
0=Mesotrophic HIGHMOOR

Topsoil lithology⁎ 1=Peat-colonial SOILCOV PEATCOL
0=Sandy/clayey

Distance to boundary delineation
b125 m⁎a 1=Yes/0=No DIST125 m
b250 m 1=Yes/0=No DIST250 m

Nearest neighbouring soil group
2 levels 1=Peat soil NEIGHB_2L

0=Mineral soil
3 levels⁎a 1=Thick peat soil NEIGHB_3L

2=Thin peat soil
3=Mineral soil

Dominant soil group, 125 m radius
2 levels See nearest neighb. soil group DOMSOIL125_2L
3 levels See nearest neighb. soil group DOMSOIL125_3L

Dominant soil group, 250 m radius
2 levels See nearest neighb. soil group DOMSOIL250_2L
3 levels See nearest neighb. soil group DOMSOIL250_3L

Dominant soil group, 500 m radius
2 levels See nearest neighb. soil group DOMSOIL500_2L
3 levels⁎ See nearest neighb. soil group DOMSOIL500_3L

9 Groundwater–soil map
Oxidation risk, using GD⁎a 1=High/0=Low PEATOX_GD GD, GD_W
Oxidation risk, using GT 1=High/0=Low PEATOX_GT GD, GT, GT_W

⁎Predictors selected after univariate analysis.
a Outcome soil group PS has a zero cell frequency for one of the levels of the variable.
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The first MLR-model estimation started with all 24 predictors. Soil
group mPY was used as reference level. All predictors except GD,
GT_W and HLC_GR were selected resulting in a model that showed
strong multicollinearity effects, evidenced by highly inflated coeffi-
cients and standard errors for several predictors. To remove the
multicollinearity effects we started with omitting the least significant
predictor of variable groups elevation, recent land cover and historic
land cover until the two strongest predictors within these groups



Table 3
Competing MLR-models with their goodness-of-fit measures.

Model 1 Model 2 Model 3 Model 4 Model 4⁎

Variable group
1 ELEV ELEV ELEV ELEV ELEV
2 RELELEV250 RELELEV1000 RELELEV250 RELELEV250 RELELEV250
3 GT GT GT GT GT
4 RLC_ROTCR RLC_ROTCR RLC_GR RLC_ROTCR RLC_ROTCR
5 HLC_HEATH HLC_HEATH HLC_HEATH HLC_NAT HLC_NAT
6 BROOKVAL BROOKVAL BROOKVAL BROOKVAL
7 PEATCOL PEATCOL PEATCOL PEATCOL PEATCOL
8 PEATTYPE PEATTYPE PEATTYPE PEATTYPE PEATTYPE

SOILCOV SOILCOV SOILCOV SOILCOV SOILCOV
DIST125 m DIST125 m DIST125 m DIST125 m
NEIGHB_3L NEIGHB_3L NEIGHB_3L NEIGHB_3L
DOMSOIL500_3L DOMSOIL500_3L DOMSOIL500_3L DOMSOIL500_3L DOMSOIL500_3L

9 PEATOX_GD PEATOX_GD PEATOX_GD PEATOX_GD

Goodness-of-fit measure
Pearson—χ2 (df) 19,592 (20,034) 19,824 (20,041) 19,636 (20,034) 18,716 (20,062) 24,119 (20,027)
McFadden—R2 0.13 0.12 0.13 0.13 0.10
Calibration purity 0.484 0.480 0.481 0.484 0.476

Competing predictors are indicated in bold type.

Fig. 3. Logit graphs for predictors RELELEV250 (top) and ELEV (bottom).
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remained. With these predictors we fitted four competing MLR-
models (Models 1–4, Table 3). Model 1 is the model after selection of
the most significant predictor from each variable group. Models 2 to 4
are competing models in which one of the competing predictors is
substituted for the other competing predictor of the same variable
group. Because none of these models showed effects of multi-
collinearity, we decided to keep theweakly andmoderately associated
predictors that belong to different variable groups in the model. Four
predictors caused numerical instability during the fit of the logit
function of outcome level PS. Because eliminating an outcome level is
at first less preferable than omitting predictors, we fitted an MLR-
model without the predictors that caused numerical instability during
the fit of the logit function of map unit PS (Model 4⁎, Table 3).

3.1.5. Evaluation of adequacy of the multivariate model(s)
Summary measures of goodness-of-fit were calculated for each of

the four competing multivariate models (Models 1–4, Table 3). All
goodness-of-fit measures are very similar for the four competing
models. As Model 4 performed slightly better for Pearson Chi-squared
and calibration purity, we chose this model for the next steps in the
model-building process. Model 4⁎ performed worse than Model 4
(Table 3). We decided to eliminate PS as outcome level because soil
group PS was observed at only 17 locations within map unit mPY. A
pedological justification is that soils belonging to the PS soil group are
unlikely to occur in map unit mPY as they are characteristic for the
open field farming system found on coversand ridges and not for peat
reclamation areas. The refitted MLR-model contained the same
predictors as Model 4.

The number of significant predictors differed between the six logit
functions and showed a clear relationship with the number of
observations of each soil group. Only three predictors were significant
(at the 0.15 level) in the logit of soil group S (19 observations)whereas
ten predictors were significant in the logit of soil group PZ (1234
observations). The number of significant predictors in the logits of the
other soil groups varied from seven (PY, 423 observations) to four (P,
60 observations). Predictors SOILCOV, HLC_NAT and NEIGHB_3CL
were not significant for five logit functions. Since the likelihood ratio
test is significant for SOILCOV and SOILCOV is a pedologically
important predictor, we decided to retain this predictor in the
model. The likelihood ratio test for HLC_NAT is not significant.
Furthermore, HLC_NAT is only a moderately strong confounder of
one coefficient in the logit of soil group PZ. We therefore omitted
HLC_NAT from the model. NEIGHB_3L contributes significantly to the
model and is a strong confounder of other predictors, in spite of five
non-significant model coefficients. Collapsing NEIGHB_3L to two
levels improves the Wald statistics: the coefficient of the binary
predictor is significant in three logits. However, the likelihood ratio
test suggests that the model with the three-level predictor performs
better than the model with the binary predictor so we decided to
retain NEIGHB_3L in the model. Predictors DOMSOIL500_3L,
RLC_ROTCR and BROOKVAL were not significant for four logit
functions. Collapsing DOMSOIL_3L into a binary predictor or omitting
the predictor did not improve the model. BROOKVAL and RLC_ROTCR
were kept in the model for their pedological significance although the
likelihood ratio test of BROOKVAL did not confirm its importance. Like
the odd ratios of the univariate model, the odd ratios of the
multivariate MLR-model generally agree with the conceptual model
of pedogenesis.



Table 4
The estimated model coefficients (Coeff) and odds ratios (OR) of the final MLR-model
for map unit mPY.

Predictor Logit function

PZ mP E

Coeff OR Coeff OR Coeff OR

Intercept −0.63 −3.61⁎ −4.26⁎
NEIGHB_3L=1 −0.22⁎ 0.81 1.12⁎ 3.08 0.08 1.08
NEIGHB_3L=2 −2.04⁎ 0.13 0.12 1.13 0.33 1.38
DOMSOIL500_3L=1 −0.83⁎ 0.44 0.81⁎ 2.24 −1.05⁎ 0.35
DOMSOIL500_3L=2 −0.36⁎ 0.70 0.26 1.30 −0.52⁎ 0.60
DIST_125M=0 −0.24⁎ 0.79 −0.37⁎ 0.69 0.31 1.37
SOILCOV=0 0.12 1.13 −0.40⁎ 0.67 −0.47 0.62
GT=1 −0.02 0.98 −0.88⁎ 0.42 0.87⁎ 2.38
GT=2 0.10 1.11 −0.658 0.52 0.04 1.04
RLC_ROTCR=0 −0.23⁎ 0.80 −0.07 0.93 −0.48⁎ 0.62
PEATOX_GD=0 −0.49⁎ 0.61 0.46⁎ 1.58 −0.15 0.86
PEATTYPE=0 0.12 1.12 0.28 1.32 1.50⁎ 4.49
PEATCOL=0 0.82⁎ 2.27 0.75⁎ 2.12 1.85⁎ 6.39
BROOKVAL=0 0.42⁎ 1.52 0.52 1.69 −0.12 0.88
ELEV 0.001⁎ 1.001 0.002⁎ 1.002
BROOKVAL=0×RELELEV250 0.02⁎ 1.02 −0.01⁎ 0.99 0.02⁎ 1.02
BROOKVAL=1×RELELEV250 0.05⁎ 1.05 −0.03⁎ 0.97 0.02⁎ 1.02
RLC_ROTCR=0×RELELEV250 0.01 1.01 −0.02⁎ 0.98 −0.01 0.99

Predictor Logit function

P PY S

Coeff OR Coeff OR Coeff OR

Intercept −6.91⁎ −3.37⁎ −5.70⁎
NEIGHB_3L=1 0.24 1.27 −0.17 0.84 0.25 1.29
NEIGHB_3L=2 −1.02 0.36 −0.53⁎ 0.59 0.68 1.97
DOMSOIL500_3L=1 1.44⁎ 4.20 0.10 1.11 −1.60 0.20
DOMSOIL500_3L=2 0.64 1.89 0.49⁎ 1.63 −0.64 0.53
DIST_125M=0 0.23 1.26 0.14 1.16 −1.88⁎ 0.15
SOILCOV=0 −0.58 0.56 −1.41⁎ 0.24 −1.21 0.30
GT=1 0.93⁎ 2.54 1.80⁎ 6.04 1.25 3.49
GT=2 −0.07 0.93 0.90⁎ 2.45 0.54 1.71
RLC_ROTCR=0 0.60⁎ 1.83 0.00 1.00 0.73 2.08
PEATOX_GD=0 1.02⁎ 2.77 0.36⁎ 1.44 0.48 1.62
PEATTYPE=0 1.85⁎ 6.33 0.58⁎ 1.78 0.32 1.38
PEATCOL=0 −0.10 0.91 0.91⁎ 2.47 1.87⁎ 6.47
BROOKVAL=0 1.23⁎ 3.43 0.81⁎ 2.24 −0.98 0.38
RELELEV250 0.001 1.001 0.001⁎ 1.001 0.002⁎ 1.002
BROOKVAL=0×RELELEV250 −0.03⁎ 0.97 0.01 1.01 0.01 1.01
BROOKVAL=1×RELELEV250 −0.07⁎ 0.93 −0.02 0.98 0.02 1.02
RLC_ROTCR=0×RELELEV250 0.02 1.02 −0.01 0.99 0.01 1.01

⁎Wald statistic is significant at the 0.15 level.
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3.1.6. Checking the assumption of linearity in the logit
So far the continuous predictors ELEV and RELELEV250 were

treated as linear in the logit. The coefficients of both Box–Tidwell
transformedpredictors are not significant for four of six logit functions.
The logit graphs for RELELEV250 (Fig. 3) show that this predictor is
linear in the logits of soil groups PZ, E and S, is somewhat linear in the
logits of mP and PY, and is non-linear in the logit of P. Both logit graph
and Box–Tidwell transformation for RELELEV250 suggest that this
predictor can be treated as linear in the logit. The logit graph for ELEV
Table 5
Statistical assessment of the ten final MLR-models.

Model RMF
2 Calibration purity

mPY 0.13 0.49
P 0.31 0.61
mP 0.28 0.62
PY 0.21 0.51
BF 0.19 0.63
PZ 0.21 0.79
E 0.21 0.57
PS 0.30 0.63
T 0.31 0.75
S 0.49 0.83

RMF
2 is the McFadden-R2.
(Fig. 3) shows that this predictor is linear in the logits of outcome levels
PZ and P, and non-linear in the logits ofmPand E. The logit graphs of PY
and S show linearity between the second, third and fourth quartiles.
The results of the logit graphs and Box–Tidwell transformation for
ELEV do not convincingly support linearity in the logit, nor do they rule
it out. As the fit of the model with ELEV as continuous predictor was
much better than the fit with ELEV as categorical predictor we decided
to keep ELEV in the model as continuous.

3.1.7. Checking for interactions between predictors
Three interactions remained after exclusion of interactions that

were not pedologically plausible or that caused numerical instability
during coefficient estimation. BROOKVAL ⁎RELELEV250 and
RLC_ROTCR⁎RELELEV250 were statistically significant and pedologi-
cally plausible and were added to the main effects model. BROOK-
VAL⁎PEATOX_GD was significant but did not improve the model fit,
and was therefore not included. The final MLR-model is presented in
Table 4.

3.1.8. Statistical and visual assessment of the final model
The results of the statistical assessment of the final MLR-model for

map unit mPY are presented in Table 5. The deviance of the fitted
model is 13% (McFadden-R2) smaller than the intercept-only model.
This model predicts the most frequently observed outcome, in this
case soil group PZ, at each calibration location. Overall calibration
purity shows that the model correctly predicts the soil group at 49% of
the calibration locations, which is a 19% increase compared to the
reference map. Statistical assessment of the other nine MLR-models
shows that the models explain a substantial part of the variation
within the soil data set (Table 5). Global calibration purity is 66%,
which is an 11% increase compared to soil classification at the
calibration locations using the reference soil map. The gain is on
average about 20% for the peat map units and 3% for the mineral map
units.

The soil map for map unit mPY did not show unexpected patterns
of soil groups. The area of soil group mPY was, as expected, greatly
reduced. Podzols were predicted at 62% of themap unit area. TheMLR-
Fig. 4. Updated soil map as predicted with the ten MLR-models.



Fig. 5.Details of the updated and reference soil maps: peat-colony updatedmap (top left), peat-colony reference map (top-right), brook valley updatedmap (bottom-left), and brook
valley reference map (bottom-right). The arrows in the bottom figures indicate the location of the north–south oriented catena shown in Fig. 7.

Table 6
Theoretical purity and entropy of the updated soil map for the areas corresponding
to the map units of the reference map, i.e. the areas for which the MLR-models
were calibrated and applied, and for pooled strata peat (P–mP–PY–mPY) and mineral
(BF–PZ–E–PS–T–S).

Theoretical purity Entropy

Global 0.67 0.40

Stratum
P 0.64 0.42
mP 0.63 0.43
PY 0.50 0.54
mPY 0.50 0.54
BF 0.83 0.21
PZ 0.79 0.34
E 0.58 0.47
PS 0.66 0.38
T 0.79 0.24
S 0.77 0.24
Peat 0.57 0.48
Mineral 0.75 0.35
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models for map units P, E and T were adjusted after inspection of the
pattern of the predicted soil groups.

3.2. Model application

Ten MLR-models were used to re-map soil distribution within the
ten map units of the reference map (Fig. 4). The general pattern of soil
groups on the updated map resembles that of the reference map,
although the updated soil group differs from the reference soil group
at 31.5% of the area. Changes are most dramatic, as expected, for the
peatmap units. The areawith peat soils declinedwith 34% (33,525 ha)
compared to the reference map. Only 45%, 20% and 30% of the soils
mapped as mP, PY and mPY, respectively are predicted as such.
Roughly 60% of the soils mapped as thin peat soils are predicted to be
transformed to mineral soils: the extent of the podzol soil group
increased with almost 40,000 ha. Thirty-six percent of the thick peat
soils with a mineral topsoil (mP), typical for the peat-colonial
landscape, are predicted to be transformed to thin peat soils with
mineral topsoil. Fig. 5 clearly shows these changes. Changes within
map unit P are less severe: only 22% is predicted to be transformed to
thin peat soils. The reason for this is that soil group P primarily occurs
in the brook valleys where peat layers are thicker and where
conditions for oxidation are less favorable compared to the peat
colonies. The strong decline of soil group Tcan be explained by the fact
that most till soils occur in association with podzol soils on the
reference map. The majority of the observations used to calibrate
the model for map unit T are classified as PZ, which results in PZ as the
dominant predicted soil group in map unit T. The area with plaggen
soils, PS, is reduced with 32% compared to the reference soil map.
Affected areas are the edges of PS map delineations (Fig. 5) and the
plaggen soils on the Hondsrug. The former is explained by the
decrease in thickness of the plaggen A-horizon from the centre of the
open fields towards the edges: if the thickness does not exceed 30 cm,
then the soil is not classified as plaggen soil. The latter is a direct result
of the observations on the Hondsrug, which were all located in a
relative small area (intensively surveyed area 3, Fig. 2). Many profile
observations within map unit PS were classified as brown forest soils
(BF). This is also the reason for the strong increase in area of map unit
BF on the updated soil map compared to the reference map.



Fig. 6. The prediction uncertainty, quantified with Shannon entropy.
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The overall theoretical purity of the updated soil map is 67%
(Table 6). In general the theoretical purity is smaller and the uncer-
tainty is larger for the areasmapped as peat soils on the referencemap
than for the mineral soils. The areas with the smallest theoretical
purity are the areas that were originally mapped as thin peat soils (PY,
mPY) and earth soils (E). Predictions for these areas are also the most
uncertain (Table 6). Map unit mPY is characteristic for the peat-
colonial landscape, whereas PY and E are mainly found along brook
valley sides. Fig. 6 shows high entropy values for these two parts of the
Fig. 7. Change of the entropy, maximum probability, mapped and pred
landscape. The soil group pattern in the peat-colonial areas is very
heterogeneous by itself and is further complicated by peat oxidation.
This makes soil spatial prediction challenging in this area, which is
evidenced by highly uncertain predictions. The brook valley sides are
topographical transition zones where gradual changes in soil weaken
relationships between soil groups and predictors. Prediction uncer-
tainty will be larger in such areas than in areas with stronger
relationships such as in the centre of the brook valleys and the high
parts of the plateau.

Fig. 7 depicts a catena of predicted and mapped soil groups along a
1500 m long transect from plateau through a brook valley to plateau,
as well as the change of estimated probabilities and entropy of the
main predicted soil groups. The location of the catena is indicated by
the arrow in Fig. 5. The typical catena in Drenthe has plaggen soils on
top of the plateau, bordered by podzols or brown forest soils
depending on parent material. When going from plateau to brook
valley one would typically encounter a gradual transition from
podzols to earth soils to thin peat soils to thick peat soils. The first
difference between predicted and mapped soil groups is the soil
sequence from the northern plateau towards the brook valley. In the
reference map plaggen soils border thick peat soils whereas the
updated map shows a pedologically more realistic transition from
plaggen soils to podzols to thin peat soils to thick peat soils. The
second difference is the prediction of podzols on a coversand
undulation in the earth soil map unit at the southern side of the
brook valley centre. These undulations are better drained than the
surrounding, lower terrain, creating more favourable conditions for
podzol formation. Earth soils are predicted at the sides of the
undulation and podzols at the top, which is pedologically plausible.
The thin peat soil mapped at the southern side of the brook valley is
predicted to be oxidized. Earth soils are predicted at these locations.
We did not validate the predicted soil sequence along the transect but
based on our knowledge of the soil–landscape system the updated
map shows a more realistic soil sequence along the transect than the
reference map. The probability graph shows that the MLR-models do
not have much difficulty in differentiating soil groups at the
icted soil groups along a typical catena in the Drenthe landscape.



Table 8
The estimated actual purity and sensitivity of the tenmap units of the updated soil map.

Map unit n Actual purity Sensitivity

P 9 0.77 0.52
mP 10 0.28 0.56
PY 8 0.05 0.06
mPY 13 0.37 0.25
BF 5 0.71 0.40
PZ 82 0.67 0.90
E 9 0.46 0.21
PS 8 0.80 0.47
Ta 2 0.00 –

S 4 0.94 0.52

a The sensitivity of map unit T could not be computed because soil group T was not
observed in the validation sample.
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topographical extremes: the lowest parts of the brook valleys, the
plateaus and the top of the coversand undulation. The difference
between largest and second largest estimated probability is relatively
large. Small differences in estimated probabilities are found at
topographical transition zones. At these locations the models easily
confuse between soil groups, which is evidenced by an increase in
entropy at these zones.

3.3. Model validation

Table 7 summarizes the validation results of the updated and
reference soil map. The estimated actual purity of the updated map is
58%, which is 6% larger (P=0.039) than the purity of the reference
map. The purity is 9% smaller than the theoretical purity, possibly
because the calibration locations are concentrated in the four areas
with a detailed soil map (Fig. 2). Apparently, the calibrated relation-
ships were unable to explain a similar amount of variation outside the
four detailed survey area than within the four areas.

At the level of the soil-strata soil spatial distribution is better
represented by the MLR-model than by the reference map for soil-
strata mP, PY, mPY, PS and T. The largest increase is for stratum PY
(35%, P=0.000). Purity gains for strata mP (5.4%, P=0.318) and mPY
(14%, P=0.224) are not significant due to the small numbers of
validation locations, but they are pedologically relevant, especially the
14% purity gain for stratummPY. The cause of the large purity increase
of soil-stratum T is outlined in Section 3.2. Purity gain of stratum PS is
10% (P=0.174). There is no difference in actual purity between the
updated and reference maps for soil-strata P, PZ and S. The reference
map better represents soil spatial distribution within strata E and BF.
The actual purity of both strata is 13% smaller (P=0.105 for E;
P=0.159 for BF) for the updated soil map than for the reference soil
map. These figures indicate that the global increase in map purity of
the updated map compared to the reference map is largely attributed
to the increase in purity in the peat strata. The pooled purity increase
for these strata is a pedologically relevant 11% (P=0.069) whereas the
pooled purity increase for the mineral strata is 2.4% (P=0.086).

Table 8 shows the actual purity of the tenmap units of the updated
soil map. The MLR-models predict the spatial distribution of soil
groups P, BF, PZ, PS and S fairly well, while map units PY and T have
purities close to 0. The large variation in purities can have several
reasons. Firstly, the effect of peat oxidation is underestimated: mineral
soils were observed at three validation locations in map unit PYand at
five validation locations in map unit mPY; thin peat soils were
Table 7
Estimated actual purities of the two soil maps: global purity, soil-strata purity, grouped
soil-strata (peat–mineral) purity and purity for the two mapping-scale strata.

n Updated map Reference map

Global 150 0.58 (0.04) 0.52 (0.04)

Soil stratum
P 15 0.45 (0.14) 0.45 (0.14)
mP 15 0.31 (0.11) 0.26 (0.08)
PY 9 0.40 (0.17) 0.05 (0.05)
mPY 22 0.50 (0.11) 0.36 (0.11)
BF 4 0.13 (0.13) 0.26 (0.00)
PZ 55 0.73 (0.06) 0.73 (0.06)
E 10 0.42 (0.14) 0.55 (0.17)
PS 11 0.75 (0.15) 0.65 (0.10)
T 4 0.98 (0.03) 0.00 (0.00)
S 5 0.64 (0.32) 0.64 (0.32)
Peat 61 0.43 (0.07) 0.32 (0.06)
Mineral 89 0.70 (0.05) 0.67 (0.05)

Mapping-scale stratum
Area with 1:10,000 map 26 0.72 (0.12)
Area without 1:10,0000 map 124 0.56 (0.04)

The number in brackets is the estimated standard error and n is the number of
validation samples used to estimate the actual purity.
observed at four validation locations in map unit mP. Secondly, the
models have difficulty in predicting topsoil lithology of peat soils,
which is to a large extent influenced by human activities and is not
easily associated to environmental predictors. In map unit PY, soil
groupmPYwas observed at three validation locations and soil group P
was observed at three validation locations in map unit mP. Thirdly, soil
groups in topographical transition zones are easily confounded as
indicated by Fig. 7. In map unit E, typical for such transition zones,
earth soils, podzols and peat soils were observed. Fourthly, sample
size. The small number of validation locations in several map units
results in highly uncertain purity estimates. An example is the purity
of map unit T thatmight be attributed to chance as only two validation
locations were located in this map unit.

It is interesting to note that if we would aggregate the updated soil
map to two map units (peat and mineral) and then validate the map,
the purity of the peat map unit would increase to 80% while the
pooled purity of the four separate peat map units is 42%. This indicates
that the main confusion between predicted soil groups within the
predicted peat map units is between the four peat soil groups. Thus at
the locations where the MLR-models predict peat soils, it is very likely
that a peat layer is present in the soil profile at these locations.
However, the model is uncertain about the thickness of the peat layer
and the topsoil lithology (peaty or mineral). The purity of the mineral
map unit is 88%.

4. Discussion

4.1. Multinomial logistic regression for soil mapping

MLR is computationally a simple method compared to more
demanding methods such as indicator kriging (IK) (Bierkens and
Burrough, 1993) and Bayesian Maximum Entropy (BME) (Brus et al.,
2008). It does not suffer from shortcomings of IK like probabilities that
are outside the interval [0,1] or probabilities that do not sum to 1. Nor
is it as computationally demanding as BME. However, building a
statistically and pedologically sound MLR-model requires careful
attention as many choices have to be made, and interpretation (both
statistical and pedological) of theMLR-model is not as straightforward
as that of linear regression models. The framework based on Hosmer
and Lemeshow (1989) proved a valuable guideline for building MLR-
models, although the steps should be meticulously applied.

The main drawback of applying MLR to spatial data is that spatial
autocorrelation during coefficient estimation and prediction is
ignored. This may bias estimated effects of the predictors on the
response variable. Hengl et al. (2007a) showed that MLR did not
perform as well as methods that incorporate spatial autocorrelation in
soil spatial prediction. Autologistic regression can account for spatial
autocorrelation in the response variable and is a popular method in
spatial ecology (Smith, 1994; Augustin et al., 1996). Unfortunately, the
autologistic regression model can only handle binomially distributed
data. There are no examples known to us that extend the autologistic
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model to the multinomial case. An alternative to account for spatial
autocorrelation in MLR is to integrate MLR with BME. The estimated
probability distributions at the nodes of the prediction grid can be
used in the BME framework as one-point bivariate probabilities that
constrain the computation of the multi-point probability density
function instead of using spatially invariant one-point bivariate
probabilities. This might result in predictions with independent errors
but is mathematically less elegant because the coefficients of theMLR-
model are still estimated as if the observations were independent, like
in regression-kriging (Hengl et al., 2007b).

Certain structures in the calibration data, such as predictors that
completely separate outcome levels or predictors that lack observa-
tions for one or more of its levels, cause non-existent maximum
likelihood estimates or infinite odds ratio estimates (Hosmer and
Lemeshow, 1989). This is a serious drawback of MLR as it limits the
number of outcome levels and the number of predictor levels. Even
with only ten soil groups we were often forced to omit outcome levels
of the response variable during model-building. Furthermore, pre-
dictors that cause complete separation or that have zero cell counts
are in theory strong predictors as they suggest that certain soil groups
do not occur under certain conditions. Several candidate predictors
that were highly correlated with the response variable could not be
used as predictors because of complete separation or zero cell counts.

4.2. Soil spatial prediction

Like Hengl et al. (2007a) we find that themost frequently observed
soil groups within a map unit are overrepresented on the predicted
soil maps (e.g. soil groups mPY and PZ in map unit mPY). Hengl et al.
(2007a) argues that this is caused by weak association of the
predictors with some of the soil groups. However, the odds ratios of
the predictors of the logits of PYand E show that the several predictors
are strongly related to soil groups PY and E (Table 4). There is no
evidence that weak associations with less frequently observed soil
groups cause overrepresentation of the most frequently observed soil
groups. The predictors strongly influence the estimated probabilities
of less frequently observed soil groups, but apparently this is not
enough to exceed the estimated probabilities of the most frequently
observed soil groups. This is caused by strong influence of the
marginal probability distribution on the conditional probability
distribution.

We can only hint at the reason why the clustered distribution of
the calibration locations causes the 9% discrepancy between actual
and theoretical purities. The four survey areas can be regarded as
reference areas used to obtain predictive relationships. These
relationships are then extrapolated across the entire survey area.
This resembles themapping approaches presented by Lagacherie et al.
(1995), Bui and Moran (2003) and Grinand et al. (2008). Lagacherie
et al. (1995) states that the reference area approach works when
similar soil forming processes act in the two areas, creating similar soil
patterns. If soil forming processes were similar for the areas with and
without a detailed soil map, as we would expect, then we would
expect similar purities for these areas. But validation indicates that the
actual purities of the two mapping-scale strata differ (Table 7). The
estimated actual purity of the updated map for the areas with detailed
soil maps is 16% larger than for the area without the detailed maps.
Note, however, that this estimate is very uncertain given the large
standard errors of the purities. This might indicate that the modelled
relationships are not so easily extrapolated across the province. If we
assume that the natural soil forming processes within and outside the
detailed survey areas are similar, then the difference between global
theoretical and actual purities and the difference between actual
purities within and outside the detailed soil survey areas might be
attributed to human influence on soil formation. Since peat soils are
much more sensitive to human interventions in the landscape than
mineral soils, we would expect the discrepancy between theoretical
and actual purity to be larger for peat soils than for mineral soils. This
is supported by the figures in Tables 6 and 7. For the pooled peat soils
this discrepancy is 14% and for the mineral soils 5%.

The influence of human activities on soil distribution might also
explain the 27% difference in actual purity of the peat soil strata
compared to mineral soil strata (Table 7). Human influence can
sometimes be proxied by predictors, e.g. human influence on peat
oxidation can be proxied by land cover and groundwater. However, in
many cases such influence is hard to proxy with biophysical data. For
example, the decision to apply a sand cover on a peaty topsoil is made
on the scale of individual agricultural fields. This leads to occurrence of
soil group mP in map unit P or mPY in PY. Furthermore, discerning
between soil groups P and mP or PYand mPY within the peat-colonial
landscape is almost impossible to relate to environmental predictors
as the organic matter content of the topsoil exhibits large short-
distance variation as a result of the reclamation method used. We
likely captured some of the local soil variation resulting from human
activities with our environmental predictors and extrapolated this
across the province where the relationships might not be valid. The
actual purity of the peat soil stratum of the updated soil map would
increase to 56.6% and global actual purity would increase to 64.1% if
we would pool map units P–mP and PY–mPY, meaning that we would
only discriminate between thick and thin peat soils and not by topsoil
lithology.

4.3. Legacy soil data

The utility of legacy soil data for updating soil maps in landscapes
with highly dynamic soils such as peat soils, greatly depends on the
age of legacy data. Roughly 60% of the calibration locations located in
the four detailed survey areas were already 12 years old at the time
this study was carried out. The other 40% was between 3 and 6 years
old. We are aware that 12 year-old observations on peat soils are also
becoming outdated as peat oxidation continued since the time the soil
profile was recorded and classified. But omitting these data from the
calibration dataset would have greatly reduced the number of
locations for calibrating the models for the peat map units.
Furthermore, the soil survey for the reference soil map was conducted
at least 15 years before the detailed soil surveys, which contained
almost all calibration observations. This means that these observa-
tions are still useful for updating. However, using decade-old
observations on peat soils for map updating might overestimate the
area of (thin) peat soils on the predicted soil map, although this is not
strongly supported by the validation. This can also contribute to the
difference between theoretical and actual purity.

4.4. Validation of soil maps

Accuracy assessment of soil maps is imperative for any soil
mapping study; traditional or digital. For thematic (soil) maps,
commonly used statistics to quantify map accuracy are the purity and
the kappa index (Hengl et al., 2007a; Li and Zhang, 2007; Grinand
et al., 2008). Another statistic for accuracy assessment that provides
valuable information is the sensitivity, or producer's accuracy, of the
map. This statistic is often used in image classification studies (Foody,
2002) but is hardly reported for (digital) soil maps. Sensitivity values
of the map units of the updated soil map are presented in Table 8. An
example of the merit of the sensitivity statistic is given by map unit P.
This map unit has a high purity (77%), which tells the user that soil
group P is found at 77% of the area predicted as soil group P.
However, the sensitivity of map unit P is 52%, meaning that only 52%
of the true area of soil group P is mapped as P. One can question the
usefulness of a soil map, for example for a carbon stock inventory, if
the area with peat soils is heavily underestimated, which is not
indicated by the purity. If we aggregate the updated soil map to two
map units (peat and mineral), the sensitivity of the peat map unit is
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72% and that of the mineral map unit 92%. This indicates that the
updated soil map distinguishes peat soils from mineral soils fairly
well.

We used pedological knowledge during the model-building phase.
Such knowledge could also be exploited for error analysis or validation
of themodel. One could argue if predicting a sitewhich is P asmP (two
different thick peat soils) is equally wrong as predicting it as PZ
(a mineral soil) and vice versa. Whether all errors are equal or
different, clearly depends on the application for which a soil type map
is used. Predicting a site which is P as mP would not have a large
impact on estimates of carbon stock but it would have for the organic
matter content of the topsoil; while predicting a sitewhich is mP as PZ
would have a large effect on carbon stock estimates but not on the
topsoil organic matter content. We did not use pedological knowledge
for computation of the validation statistics or for the evaluation of the
classification tables, but it would be worthwhile to investigate this in
future mapping studies.

5. Conclusions

Legacy soil data in combination with high-resolution environ-
mental ancillary data can be used to update a soil map. Although an
independent validation showed that updating proved to have more
effect for the peat map units than for the mineral map units.

The presented framework provides a systematic approach for
building MLR-models but it can also be easily used for linear regres-
sion models. Furthermore it allows integration of expert knowledge
during model selection and evaluation.

When calibration locations are clustered in small areas within the
survey area such as in this study, the transferability of the calibrated
relationships might be limited, especially when there is strong human
influence on soil development. This leads to overestimation of the
theoretical map purity, and emphasizes the importance of validation
of soil maps, preferably with an independent probability sample,
which gives an unbiased estimate of the map purity (De Gruijter et al.,
2006). Sensitivity is a useful accuracy measure complementary to the
purity, for thematic soil maps and is easily computed from a validation
sample.
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